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ABSTRACT

Formal verification methods, in particular when it comes to deductive
verification, bring strong guarantees about the correctness of software
systems. However, they require a high degree of expertise and tremend-
ous development time. These pitfalls sometimes jeopardize their ap-
plication in industrial-grade software, almost always preventing scaling
to complex systems. In that respect, dynamic (read: runtime) verifica-
tion allows for a more gradual approach. While the user still expresses
specifications in a formal, precise language, one checks the correct-
ness of the implementation via automatic testing at runtime rather than
proofs. It narrows the required expertise to the specification design
and the interpretation of test results.

These observations also apply to the OCamlprogramming language
community. Despite the suitability of the language for formal methods,
broad adoption still seems out of reach for tools that produce specified
or verified code. Moreover, such tools must account for details of the
language: its type system, memory representation, garbage collector,
and functional idioms.

In this work, we propose runtime verification techniques for OCaml
code that apply to preexisting codebases and engineers’ workflows. In
particular, we briefly introduce Gospel, an accessible yet expressive
specification language for OCaml. We describe Ortac, an automated
runtime assertion checker for OCaml with a modular interface that
allows for multiple usage scenarii (fuzzing, monitoring, tests). Ortac
aims to support a non-trivial subset of OCaml (e. g. functors, excep-
tions, effects). It uses typing information to produce efficient verifica-
tions (e. g. narrowing the copies, handling arbitrary precision integers,
partially verifying type invariants). Lastly, we elaborate onmemory op-
timizations for verifying postconditions referencing the prestate. They
consist of specification transformations, generalized to apply to other
languages, that have been proven correct using the Coq proof assistant.

This work opens a way for an automated verification ecosystem that
would be unintrusive and suitable for the developers’ needs in the
OCaml community.
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RÉSUMÉ

Les outils de vérification formelle, en particulier dans le domaine de la
vérification déductive, apportent des garanties statiques fortes de cor-
rection des systèmes logiciels, mais nécessitent un haut degré d’exper-
tise et des durées de développement considérables. Ces obstacles com-
promettent parfois leur mise en place dans un contexte industriel, et
presque toujours leur passage à l’échelle dans des systèmes complexes.
Dans ce contexte, la vérification dynamique (comprendre : à l’exécu-
tion) permet une approche plus graduelle. Alors que les spécifications
sont toujours exprimées en termes logiques précis, on s’assure de la
correction de l’implémentation par des tests automatiques à mesure
de son exécution, plutôt que par des preuves. L’expertise nécessaire est
alors restreinte à la conception de spécifications et l’interprétation des
résultats de test.

La communauté du langage de programmation OCaml n’échappe
pas à ce constat. Malgré le fait que le langage semble propice à la mise
en place de méthodes formelles, aucun outil ne paraît connaître une
adoption large pour la production de code OCaml spécifié ou vérifié.
De surcroît, pour un outil prétendant répondre à cette question, il faut
également prendre en compte les spécificités du langage, notamment
les interactions avec le typage statique, l’influence de la représentation
mémoire et du ramasse-miettes ou les idiomes liés à la programmation
fonctionnelle.

Dans ce travail, on propose des techniques de vérification dynamique
de code OCaml applicables à des bases de code préexistantes et inté-
grables aux flux de travail des ingénieurs logiciels qui les maintiennent.
En particulier, on présente brièvement Gospel, un langage de spé-
cification accessible mais expressif pour OCaml. On décrit Ortac,
un outil de vérification dynamique pour OCaml entièrement automa-
tisé dont l’interface modulaire permet son utilisation dans une grande
variété de scenarii (fuzzing, monitoring, test). Il entend supporter un
sous-ensemble non trivial d’OCaml (e. g. foncteurs, exceptions, effets)
avec l’appui du typage et dans un souci d’efficacité des vérifications
effectuées (e. g. limitation des copies, gestion des entiers de précision
arbitraire, vérification partielle des invariants de types). Enfin, on déve-
loppe une famille d’optimisations de la mémoire pour la vérification de
post-conditions faisant référence au pré-état. Elles prennent la forme
de transformations de spécifications, généralisées pour être applicables
dans d’autres langages, et prouvées correctes avec l’assistant de preuves
Coq.
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Le travail entrepris permet d’envisager un écosystème de vérification
automatisé, peu intrusif et adapté aux besoins des développeurs et
développeuses de la communauté OCaml.
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1
INTRODUCT ION

In the beginning God created the programs. Now the programs were
formless and empty, darkness and bugs were over the surface of the
deep, and the Spirit of God was hovering over the waters.

And God said, ‘Let there be correctness’, and there was correctness.
God saw that correctness was good, and they separated the programs
from the bugs.

The end.

Well, not quite.
Bugs still lingered, multiplying with each stride. Undeterred, hu-

mans pressed on, seeking perfection through the harmonious fusion
of formal methods and runtime checks. The journey continues, for in
this quest, they find the ever-unfolding promise of bug-free software.
The end? Nay, a new beginning.

1 .1 specifications and proofs

1.1 .1 What Should Programs Do?

Correctness only makes sense with respect to specifications: they set
the expectations in the sentence ‘what should this program do?’. Soft-
ware systems are often—almost always—developed without complete,
formal specifications. Instead, the development constraints are ex-
pressed in plain natural language by a manager, a client, a little voice
in our head, or, at best, a written design document. Regardless of the
level of details provided, they rely on our human understanding of
these spoken constraints, where ambiguities and cultural influence—
and therefore misunderstandings—thrive.

Hence we need dedicated formal specification languages based on
mathematical notations and logic and designed to describe program
behaviour with precise semantics. Specifying programs remains a com-
plex task in many cases. It requires a deep understanding of the logic
system the specification language implements and the specified pro-
gram.

3



4 introduction

1.1 .2 Do Programs Do What They Should Do?

Along with formal specifications, formal methods were developed to
reason about programs and characterize their behaviour to ultimately
prove that they comply with their specification. They aim at statically—
i. e. by analyzing the program only, not executing it—predicting pro-
gram outputs and effects. The results they provide hold for all possible
executions of the program. The details of these techniques are off the
topic of this thesis. However, we may cite a few significant domains
available for program verification.

weakest precondition calculus. In this method, we compute
the weakest precondition that ensures a desired postcondition—e. g.
the one in the specification—holds after a program is executed. We
check that this precondition indeed holds. It allows for compositional
reasoning and modularity in verifying the correctness of individual
program statements or fragments. Why3, VeriFast, Dafny, or the
WP plugin from Frama-C are notable tools that rely on this technique.

theorem proving. Theorem proving involves using mathematical
logic closer to Mathematics usage—users write definitions, theorems,
proofs—to prove the correctness of software or hardware systems. It
requires constructing formal proofs based on axioms and rules of infer-
ence. Interactive theorem provers like Coq and Isabelle are popular
tools for this domain. The verified C compiler CompCert is a particu-
larly noticeable success story of these methods.

model checking. Model checking is a formal verification technique
that exhaustively explores all possible states of a system—or abstract
states—to check whether specific properties hold true or if certain con-
ditions are met. It is handy for finite-state systems and concurrent
systems. Tools like SPIN and NuSMV are commonly used for model
checking.

abstract interpretation. Abstract interpretation is a static ana-
lysis technique that approximates the behaviour of a program using
abstract domains. They are suitable for automated proofs, at the cost
of often weaker logic systems. The Astrée and PAGAI tools are ex-
amples of abstract interpretation tools.

1 .1 .3 [Proving] Software [Correctness] is Hard

While it offers significant advantages regarding reliability and con-
fidence, formal verification is notoriously challenging and resource-
intensive. Several factors contribute to the difficulty of proving soft-
ware using formal verification.



1.2 towards runtime assertion checking. 5

software size and complexity. Deployed software systems con-
sist of millions of lines of code and intricate interactions between nu-
merous components—often written by different authors.

limited automation; extensive expertise. While some aspects
of formal verification can be automated, such as syntax checking and
simple property verification,more complex proofs often require human
intervention and manual effort. The process of constructing formal
proofs can be labour-intensive and require specialized skills.

interaction with the program environment. Real-world soft-
ware systems interact with external environments, including user in-
puts, network communication, and hardware devices. Verifying the
correctness of software in such dynamic environments can be particu-
larly challenging as it requires modelling and specifying these too.

undecidable problems. Last but not least, many problems in soft-
ware verification are undecidable. The most (in?)famous one is per-
haps the halting problem—does this program terminate?—but many
deduction systems implemented in specification languages are also
undecidable, e. g. first-order logic with quantifiers.

1 .2 towards runtime assertion checking.

RuntimeAssertion Checking (RAC) is a set of dynamic verification tech-
niques that verify that some properties—assertions—about the pro-
gram hold at runtime during the execution of the program. They aim
at detecting and reporting misbehaviours as soon as they arise in the
execution and the development process and, hopefully, before they
cascade into catastrophic events.

level 0: assert . The concept of assertions in programming can be
traced back to the 1960s when they were used informally as comments
or sanity checks in code. Developers manually insert checks to ensure
certain Boolean conditions are met during program execution, aiding
debugging and error detection.

design by contract™. The development of formal methods in the Funnily enough (?),
Design by
Contract™ has been
a registered
trademark of Eiffel
Software since
2004 [34].

1970s and 1980s brought a more systematic approach to software veri-
fication. Bertrand Meyer popularized assertions as a formal means of
specifying program behaviour (as opposed to individual statements at
specific points in the program) in the 1980s with Eiffel and its Design
by Contract™. It advocates using preconditions, postconditions, and
class invariants within the programming language itself as program-
matic documentation. The program Boolean expressions are meant to
be verified at runtime during the development phase. Design by Con-
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tract™ also provides methods and workflows to guide developers into
using this new technique that mixes tests and formal specifications.

broader adoption. Since then, the approach has been adopted to
develop specification languages and their runtime assertion checkers
for most mainstream programming languages. The support and veri-
fication of these contracts still take various shapes and forms: some are
part of the language itself (e. g. SPARK for Ada), others are special
comments meant to be processed by external tools (e. g. JML for Java
or E-ACSL for C), and some are libraries that let developers program
the contracts fromwithin the language (e. g. Decorator Contracts
for Javascript) before they are executed.

1 .2.1 A More Practicable Technique

Of course, runtime assertion checks offer weaker correctness guaran-
tees: they check individual program executions rather than proving the
correctness of all program executions. They, however, overcome some
of the weaknesses of static verifications and are generally easier to ap-
ply.

ease of use. With the correct tooling, integrating runtime assertion
checks into the code does not require additional expertise other than
interpreting the results.

incremental approach. Unlike static verification, which often re-
quires the entire program to be formally verified—because the indi-
vidual parts influence the general outcome of the program—runtime
assertion checking allows developers to apply verification selectively.
They can specify their programs partially and focus on specific parts
of the code that are most critical or prone to errors, making it a more
incremental and manageable process.

systematic counterexamples. Runtime assertion checking aids
debugging by identifying errors, pinpointing their locations in the code,
and providing failing examples. The failed assertions provide valuable
information about the program’s state at the time of the error, facilitat-
ing efficient bug diagnosis and resolution.

flexibility. Assertions can be used for various purposes, such as
checking preconditions or postconditions of functions, validating data
invariants, or verifying correct behaviour in specific scenarios. This
flexibility allows developers to tailor the assertions to suit their specific
verification needs.
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applicability to large codebases. Runtime assertion checking
can be applied to large, existing codebases without significant changes
to the overall development process, which makes it a practical option
for improving the reliability of legacy software systems.

1.2.2 Some Challenges Ahead

Is it to say that runtime assertion checking is easy? After all, we just
have to test the specifications, right? Well, not really.

If the ultimate goal is to provide tools that are easy to use, design-
ing them comes with challenges. Some are verification and semantics
challenges: we need to bridge the semantics of the programming lan-
guage and the one of the specification language; others are engineering
challenges: the runtime checks should integrate seamlessly into the
developers’ workflows; others are performance challenges: checking
assertions at runtime introduce additional computations that affect the
program performance.

1 .3 the gospel project

In 2018, the goal of the Vocal project was to develop Vocal[39], a
formally verified library containing useful data structures like the ones
of a standard library (e. g. lists, arrays, queues, hash tables) written in
(and for) the OCaml programming language. As we mentioned pre-
viously, formal verification means correction with respect to a formal
specification. However, there was no formal specification language for
OCaml.

The key contribution of the project is the design of a specification
language for OCaml: Gospel. From the beginning, a key design point We show examples of

Gospel
specifications in
chapter 2.

is that the specification language should remain independent of the
tools that will later be used to prove that the programs comply with
them.

For instance, it aims at interfacing with CFML—which implements
a separation logic and targets pointer-based data structure—, or the
Why3 platform—with its high degree of automation using off-the-shelf
SMT solvers[10].

No runtime assertion checking in sight, though! In truth, although
Gospel did not target a specific verification tool, it was mainly de-
signed with Deductive Verification (DV) in mind, and its specifications
are not necessarily executable.

1 .4 contributions

In this thesis, we show some of the challenges that arise when it comes
to executing these specifications. We propose techniques and methods
for the runtime assertion checking of OCaml code based on the Gos-
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pel language. We implemented them in a tool named Ortac (Ocaml
RunTime Assertion Checking) [33]. Rather than trying to bring de-
velopers to prove their software, we believe RAC is a great means to
bring formal methods to the developers with a tool that can be useful
to them.

1.4.1 Gospel: a Specification Language for OCaml

In chapter 2, we briefly introduce Gospel through three examples. We
do not dive into specifics about the language—this would be out of our
topic. Instead, we give a sense of the basics to understand why runtime
assertion checking is challenging.

In parallel with the work presented in this thesis was a significant
development and maintenance of the Gospel type-checker and test
cases to ensure that the language and its implementation stay aligned
with its core principles and evolve alongwith the uncovered new needs.
The initial code base was significantly simplified and was brought up
to speed with the common practices of PPX—OCaml preprocessors—
development. It provides a library that multiple tools build upon to
process the specifications and an executable that perform simple sanity
checks over the specifications. Finally, the code is tested with hundreds
of test cases that ensure regressions do not occur in future develop-
ments.

Gospel is an open-source project available at https://github.com/
ocaml-gospel/gospel.

1 .4.2 Ortac: a Runtime Assertion Checking Tool for OCaml and Gospel

In chapter 3, we present Ortac, a tool that consumes OCaml inter-
faces augmented with Gospel specifications and generates code that
checks the function contracts and type invariants at runtime and re-
ports the specification violations as soon as they occur. It produces
wrappers around the functions and types of the instrumented module.
It returns amodule with the same interface to the user, only augmented
with runtime verifications.

The design of Ortac is guided by several principles: (a) it aims at be-
ing fully automated—although configurable—and should not require
extra expertise beyond the interpretation of the results; (b) it should
be clear at all times what verifications are made by the instrumented
code, so the results are easy to interpret; (c) it should be unintrusive
to the developers’ workflows and integrate properly into the compila-
tion chain; (d) it must not break any abstraction barriers—provided by
the module system or the memory representation of OCaml—that are
present in the instrumented code. RAC by essence has a performance
cost since it introduces extra computations. However, we also set it as
a secondary goal to limit this cost to a minimum.

https://github.com/ocaml-gospel/gospel
https://github.com/ocaml-gospel/gospel
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On top of an executable tool, Ortac also provides a library—with the
same name—for the translation of Gospel specifications to OCaml
programs. It lets developers extend its behaviour via plugins. We de-
scribe a plugin that turns Ortac into a full-fledged fuzzer for OCaml
interfaces that include the boilerplate code necessary to interface with
afl-fuzz and automatically generates test cases.

Since Gospel is not a language dedicated to runtime assertion check-
ing, some specifications contain parts that cannot be checked at runtime
without more information, such as unbounded quantifiers or uninter-
preted logical symbols. Other specifications seem hard to execute—e. g.
because the specifications refer to values that do not exist or are not
accessible in the program but only exist in the logic domain—but one
can find workarounds to verify them regardless. Ortac identifies and
translates the executable subset of these specifications. It reports non-
executable parts to the user but does not block the rest of the instrument-
ation. It allows incremental specifications improvements over time and
partial proofs by other means (e. g. DV).

In chapter 6, we highlight some challenging aspects of translating
Gospel to OCaml and techniques we implemented to tackle them.

Gospel (rightfully) abstracts away from implementation details in
its standard library. For instance, it provides polymorphic containers
like sets or a polymorphic equality predicate. However, these ‘details’
need to be resolved when one wants to execute specifications, and im-
plementing these is not a straightforward task in pure OCaml. We
show how Ortac uses the static typing information of OCaml to gen-
erate primitives over OCaml values that allow us to implement these
complex structures. We also describe cases where the type informa-
tion allows us to generate more efficient code than using their generic,
polymorphic counterparts.

Sometimes, the performance improvements come from something
other than implementing the verifications themselves but from the
structure of the wrappers. We show how Ortac avoids some com-
putations by skipping useless verifications (e. g. type invariants) when
they are not needed to ensure the correctness of the program.

Finally, we also show that the complexity of verifying Gospel spe-
cifications by instrumenting OCaml code sometimes involves some-
what unexpected combinatorics that has to be dealt with carefully, for
instance, when dealing with exceptions. Indeed, exceptional beha-
viours are also part of the specifications andmust be checked. However,
we also must consider that the code Ortac generates may itself raise
exceptions.

Ortac is an open-source project available online at https://github.
com/ocaml-gospel/ortac.

https://github.com/ocaml-gospel/ortac
https://github.com/ocaml-gospel/ortac
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1.4.3 A Formalized Subset of Gospel to Reason About Memory

In chapter 4, we formalize imperative programs along with a subset of
our specification language to provide a basis for proofs of specification
manipulations. The formalization is done within the Coq theorem
prover.

The goal of this language is to be ‘simple, but not too simple’: it is
simple on the surface, and its semantics is easy to manipulate, but it
does not hide the details of the memory representation of values.

It features three primitive types—mathematical integers and their
arithmetics, mutable homogeneous arrays, and immutable heterogen-
eous tuples— along with primitives to manipulate them in the specific-
ations. It also features the old primitive in Gospel to refer to prestate
values in function postconditions. These structures allow us to model
complex behaviour and memory patterns e. g. involving aliasing, cyclic
values, value mutations, or immutable values.

Imperative programs in this formalization are agnostic of the lan-
guage they are written in, and the specification language only has con-
structs common to most specification languages, making it reusable in
other settings.

1 .4.4 Optimizations for an Efficient Capture of Prestates in Postconditions

In most behavioural specification languages for imperative languages,
function postconditions may refer to the prestate of the function, typic-
ally using some old, at, or pre operator. Gospel is no exception and
provides an old operator that does just that. For instance, a function
postcondition !x = old !x + 1 states that the function call increments
the variable x.

In order to perform runtime verification, we need to evaluate terms
and predicates—such as the term old !x above—after function calls.
However, the prestate, which old refers to, does not exist anymore at
this point in the program: mutable state can be modified—in function
parameters or even global state—and the structure of the memory may
be different under the action of the Garbage Collector (GC)—in partic-
ular, some values may not be accessible anymore. Consequently, the
code instrumentation must record any value required to evaluate the
predicates involving old.

In chapter 5, we consider the problem of efficiently capturing these
prestates in Ortac. We propose specification transformations that
let us copy a sound subset of the memory and ultimately let us pro-
duce correct and well-typed instrumented code. We also propose a last
transformation that optimizes the runtime verification cost of logical
assertions containing old by reducing the subset of the memory one
must copy to compute these checks. We rely on the language formal-
ization to prove that these transformations are sound and improve the
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performance of the instrumented programs. We show the efficiency of
this method with benchmarks that confirm significant improvements
in memory usage and CPU time.

conclusion

Runtime assertion checking is paving the path towards a more formal
approach to programming. By inserting dynamic checks into the code,
developers can actively detect errors and violations during program
execution, boosting confidence in software correctness. This pragmatic
technique complements formal methods and type-checking, ensuring
rapid bug identification and enhancing code reliability, all while pre-
serving the agility needed for modern software development.

Gospel and Ortac provide a framework to better structure the tests
developers already write by incorporating precise semantics and doc-
umentation into their libraries. These automated tests are unintrusive
and easily deployable and are the first step for a smooth transition to-
wards verified software.





2
GOSPEL: A FORMAL SPEC I F ICAT ION LANGUAGE
FOR OCAML

In this chapter, we introduce the Gospel specification language and
the process of specifying OCaml interfaces with it. We do not aim to
provide a language specification or a user manual. Instead, we present
three examples that involve interesting features of Gospelwith respect
to the runtime verification capabilities of Ortac and its limitations. A
more detailed and up-to-date language specification is available on-
line at https://ocaml-gospel.github.io/gospel, along with a user
manual and some more examples of use cases.

2.1 example 1: fibonacci numbers

In this first example, we aim to specify a simple function that computes
the 𝑛th Fibonacci number. Recall that Fibonacci numbers are defined
as follows:

𝐹0 = 0
𝐹1 = 1
𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2

Here is a tail-recursive implementation of this function in OCaml.

let fib n =

let rec aux n b a =

if n <<= 0 then a

else aux (n - 1) (a + b) b in

aux n 1 0

Its signature is simple: the function takes an integer and returns an
integer.

val fib: int -> int

(*** [fib n] is the [n]th Fibonacci number. *)

Its functional correctness, however, is not trivial (in particular be-
cause of the inner function aux). Therefore, writing a specification for
this function and attaching it to its interface makes sense. We write

13

https://ocaml-gospel.github.io/gospel
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Gospel specifications in special comments starting with the charac-
ter @. They have an attachment mechanism similar to OCaml docu-
mentation comments (starting with the character *). Documentation
comments and Gospel specification comments can (and should!) co-
exist.

In most cases, the function specification consists of two parts: (a) a
specification header, which lets us name the function arguments and
return value so we can mention them in the rest of the specification;
(b) a specification body, which contains a number of clauses that specify
the behaviour of the function.

2.1 .1 Specifying Allowed Input Values

In the case of fib, a minimal specification can already contribute to
the documentation, which implicitly assumes that 𝑛 should be positive,
but does not specify the function behaviour in that case or whether this
is considered a valid call.

There are many ways of specifying this condition on the input. We
show three of them in this example. We show a fourth one based on
exceptions in the following example in section 2.2.

forbidden values. A first way of specifying fib is to mention that
one should never call it with a negative argument. We can express this
precondition with a requires clause.

val fib: int -> int

(*@ r = fib n

requires 0 <= n *)

In that case, the behaviour of fib is unspecified when 𝑛 is negative. It
can return an arbitrary integer, raise an exception, crash the program
with a segmentation fault, or even not terminate at all.

a more defensive version. One could also consider a more de-
fensive version of fib that checks that the input is valid before doing
anything and raises an exception to the user otherwise:

let fib n =

let rec aux n b a =

if n = 0 then a

else aux (n - 1) (a + b) b in

if n < 0 then invalid_arg "argument must be positive";

aux n 1 0

This time, the function is in charge of checking the precondition instead
of the caller. Although the previous specification is still valid, Gospel
also lets us specify this idiomatic pattern with a checks precondition
instead of a requires clause:
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val fib: int -> int

(*@ r = fib n

checks 0 <= n *)
It is up to each proof
or test tool to
determine if this is
considered a valid
call.

The checks clauses express that a client may call fib with a negative
input, but the function raises an Invalid_argument exception from the
standard library in that case.

significant default value. Our initial implementation does re-
turn a value even if 𝑛 is negative (it returns 0 in that case). A third
possible specification would be to expose this default value for the cli-
ent to use if necessary. In this scenario, passing a negative integer to fib Arguably, this would

be a poor design
choice in this case.

is a valid call, and the caller is guaranteed to get 0 as a return. There-
fore, we need not express a precondition but a postcondition instead.
We introduce postconditions clauses with the ensures keyword.

val fib: int -> int

(*@ r = fib n

ensures n < 0 -> r = 0 *)

This postcondition uses the implication operator ->- to state that the
result is null if the argument is negative.

2.1 .2 Specifying the Result

Now that we specified the behaviour when 𝑛 < 0, let us ensure that
when 𝑛 is non-negative, fib n indeed returns the 𝑛th Fibonacci number.
Let us assume that 𝑛 is non-negative in this section to avoid unnecessary
repetitions in the specifications.

introducing fibonacci numbers to gospel. Since Gospel has
no a priori knowledge of Fibonacci numbers, we may define it in a Gos-
pel logic function that follows the mathematical definition. The syn-
tax for defining this function is close to the one of OCaml, whichmakes
it easy to read and write for OCaml developers.

(*@ function rec fibonacci (n: integer) : integer =

match n with

| 0 -> 0

| 1 -> 1

| i -> fibonacci (i - 1) + fibonacci (i - 2) *)
The Gospel logic is
total, meaning one
must prove that this
definition is
well-founded. We do
not discuss the
specifics of this
process here.

We may now use this definition and state that fib indeed returns a
value that corresponds to this definition when its argument is non-
negative:

val fib: int -> int

(*@ r = fib n

checks 0 <= n

ensures r = fibonacci n *)
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mathematical integers and machine integers. Note that the
definition of fibonacci involves values of type integer. Gospel fea-
tures both the OCaml int type for its 63 (or 31) bits integers and a
logic type integer for mathematical arbitrary-precision integers. It de-
faults to arbitrary-precision integers for most operations. In particular,
the operations + and - in the definition are defined in the Gospel stand-
ard library over the type integer. In order to keep the specifications
readable, Gospel also provides a coercion mechanism that implicitly
promotes machine integers to mathematical integers in many cases.

expressing overflows. We have established that in our specifica-
tion, the function fibonacci computes the 𝑛th Fibonacci number ac-
cording to the mathematical definition. In this context, we cannot hope
the function fib (or any other implementation, for that matter) to com-
ply with its specification since machine int are bounded. However,
Fibonacci numbers and mathematical integers are not. In fact, fib n

only is the 𝑛th Fibonacci number when the 𝑛th Fibonacci number does
not exceed Int.max_int, which occurs for 𝑛 = 91 on 64 bits machines
and 𝑛 = 47 on 32 bits machines. Therefore, a correct specification of
fib’s postcondition (on 64 bits machines) would be:

val fib: int -> int

(*@ r = fib n

checks 0 <= n

ensures n <= 91 -> r = fibonacci n *)

We can even use fibonacci as a source of truth to detect the overflow
independently of the architecture:

val fib: int -> int

(*@ r = fib n

checks 0 <= n

ensures fibonacci n <= Int.max_int ->

r = fibonacci n *)

2.1 .3 Rearranging the Clauses and Wrapping Up

Once again, this last specification is partial: it does not specify the value
of 𝑟 when an overflow occurs, even though that would be a valid call
(there is no precondition in this specification). We can use one of the
methods presented in section 2.1.1 to change it into a precondition if
we wish to defer this constraint to the client:

val fib: int -> int

(*@ r = fib n

checks 0 <= n

requires fibonacci n <= Int.max_int

ensures r = fibonacci n *)
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In that case, we do not need to repeat the precondition in the postcon-
dition: the preconditions are always assumed in the postconditions. A
fully specified interface for fib is presented in listing 2.1.

1 (* This function is a specification helper for fib. *)

2 (*@ function rec fibonacci (n: integer) : integer =

3 match n with

4 | 0 -> 0

5 | 1 -> 1

6 | i -> fibonacci (i - 1) + fibonacci (i - 2) *)

7

8 val fib : int -> int

9 (*** [fib n] is the [n]th Fibonacci number. *)

10 (*@ r = fib n

11 requires fibonacci n <= Int.max_int

12 checks 0 <= n

13 ensures r = fibonacci n *)

Listing 2.1: Specified Fibonacci function.

2.2 example 2: mutable queues

In this second example, we specify a polymorphic mutable container:
a queue (a.k.a. a FIFO). Specifically, let us consider the interface of the
Queue presented in listing 2.2, borrowed from the OCaml standard
library.

The main challenge when specifying this interface with behavioural
function contracts is that the operations over the structure modify (or
create) queues. However, the type of queues and their contents is ab-
stract and not visible in the interface. There are two main ways of
overcoming this issue using Gospel: models and pure projection func-
tions.

2.2.1 Specifying Abstract Types Using Models

Models allow us to attach Gospel types to an OCaml type to describe
that type’s values in specifications further.

2.2.1 .1 The Type 'a t

To enable reasoning about the elements of a queue, we attach a model
to its type declaration:

type 'a t

(*@ model { mutable elements: 'a seq } *)
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type 'a t

(*** The type of queues containing elements of

type ['a]. *)

exception Empty

(*** Raised when {!Queue.pop_exn} is applied to

an empty queue. *)

val create: unit -> 'a t

(*** Return a new queue, initially empty. *)

val push: 'a -> 'a t -> unit

(*** [push x q] adds the element [x] at the end

of the queue [q]. *)

val unsafe_pop: 'a t -> 'a

(*** [pop_exn q] removes and returns the first

element in non-empty queue [q]. *)

val pop: 'a t -> 'a

(*** [pop_exn q] removes and returns the first

element in non-empty queue [q]. *)

val pop_exn: 'a t -> 'a

(*** [pop_exn q] removes and returns the first

element in queue [q], or raises {!Empty}

if the queue is empty. *)

Listing 2.2: The Queue module interface.

The model elements represents the mathematical sequence of ele-
ments stored in the queue. The type 'a seq is the type of logic se-Gospel annotations

provide extra insight
and are also relevant
for documentation:

the mutability of the
type 'a t cannot be

deduced from its
OCaml declaration

alone.

quences defined in the Gospel standard library. It is defined using
Gospel comments and is usable for specifications only (it does not ex-
ist as an OCaml type). The mutable keyword states that the elements
model can change over time. Models only exist in specifications to rep-
resent abstract types or add more information to exposed types. They
do not infringe on the abstraction barrier or expose implementation
details.

2.2.1 .2 Creating Queues

The first function features the creation of a queue. Its declaration andIt is worth
mentioning that the

specification
implicitly assumes q
to be disjoint from
every previously
allocated queue.

specification are as follows:
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val create: unit -> 'a t

(*@ q = create ()

ensures q.elements = empty *)

Like for the function fib, the first line of the specification is the
header: it names the argument and return value of create in the con-
text of this specification. The newly created queue has no elements: its
elements model equals the empty sequence, as stated by the postcon-
dition.

2.2.1 .3 Pusing Into the Queue

Let us now declare and specify a push operation for these queues:

val push: 'a -> 'a t -> unit

(*@ push v q

modifies q

ensures q.elements = cons v (old q.elements) *)

In this case, there is no need to name the output since it is of type
unit. The modifies clause states that the function pushmaymutate the
contents of q. Finally, the ensures clause introduces a postcondition
that describes the model elements of q after a call to push: the new
elements extends the old value of elements with the value v at the
front. We use the keyword old to refer to the value of an expression
(here, q.elements) in the pre-state, i. e. before the function call.

2 .2.1 .4 Various Flavours of pop

Let us now move to the functions that remove and return the first ele-
ment of a queue and illustrate three ways of handling assumptions
from the client in Gospel specifications.

exceptional version. In this version, pop_exn raises an Empty ex-
ception if its argument is an empty queue. We specify this behaviour
as follows:

val pop_exn: 'a t -> 'a

(*@ v = pop_exn q

modifies q

ensures old q.elements = q.elements ++ (singleton v)

raises Empty -> q.elements = old q.elements = empty *)

We have two postconditions:

• The first one, introduced with ensures, states the post-condition
that holds whenever the function pop returns a value v.

• The second one, introduced by raises, states the exceptional post-
condition that holds whenever the call raises the exception Empty.
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Similarly to the push case, the clause modifies indicates that this
function callmaymutate q. Note that this also applies to the exceptional
case, which explains why we have stated that q is both empty and not
modified in that case.

unsafe version. Now, let us consider an unsafe variant of pop that
should only be called on a non-empty queue, leaving the responsibility
of that property to the client code. The function does not raise Empty
but expects a non-empty argument. We can thus add the following
precondition to the contract using the keyword requires:

val pop: 'a t -> 'a

(*@ v = pop q

requires q.elements <> empty

modifies q

ensures old q.elements = q.elements ++ (singleton v) *)

defensive version. Instead of assuming the caller guarantees the
precondition, we can adopt a more defensive approach where pop

raises Invalid_argument whenever an empty queue is provided. As
stated in the last section, Gospel provides a way to declare such a
behavior, using checks instead of requires:

val unsafe_pop: 'a t -> 'a

(*@ v = unsafe_pop q

checks q.elements q <> empty

modifies q

ensures old q.elements = q.elements ++ (singleton v) *)

The checks keywordmeans that the function itself checks the precon-
dition q.elements <<> empty and raises Invalid_argument whenever
it does not hold. Note that q.elements is just a logical model and may
not exist in the implementation. However, the function checks a prop-
erty that results in q.elements not being empty.
Remark 1. The checks and raises clauses are similar, yet they present
a major difference: checks states that if the queue is empty, then the
function raises an exception , whereas raises states that if an exception
is raised, then the queue was originally empty.

The interface is now fully specified and reproduced in listing 2.3.
However, in the context of runtime verification, there is a potential for
trouble in this specification. Indeed, models are purely logic structures
that do not exist in the implementation. Therefore, checking conditions
on these structures not only requires a translation of the predicates
from Gospel to OCaml but also requires the ability to construct and
maintain the model ourselves, which is generally not possible. While
there might be solutions to overcome this issue (see chapter 7 for some
insight about the support of models), there is also a way to transform
the specification to eliminate models overall.
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2.2.2 Specifying Abstract Types Using Pure Projections

The type for queues is abstract, so we used amodel type to represent its
contents and specify it. Another solution exists if we have—or canwrite
and expose—a projection function in the interface. For instance, sup-
pose the OCaml interface for Queue also provides a function elements:

Exposing such a
function is not
unusual in OCaml,
and an equivalent
one even exists in
some of the standard
library modules (e. g.
elements in
Set.S).

val elements : 'a t -> 'a list

(*** [elements q] is the list of elements contained

in [q]. *)

Unfortunately (or rather, fortunately), not all functions can be used
in Gospel specifications; only pure ones. In our context, pure functions
are functions that (a) do not perform any observable writing effect on
mutable data; (b) do not raise exceptions; (c) always terminate. If these
conditions are met by our implementation of elements (they hopefully
are), we can mark the function as pure in its Gospel contract: The Gospel

type-checker (or
Ortac) does not
check whether the
function is pure.

val elements : 'a t -> 'a list

(*@ pure *)

We may now use this function in the specification and replace the
model references q.elements by functions calls elements q, and the
Sequence functions by the corresponding ones in List, for instance:

val push: 'a -> 'a t -> unit

(*@ push v q

modifies q

ensures elements q = v :: (old (elements q)) *)

Remark 2. When using calling List functions in Gospel contracts, we
in fact call pure functions located in the OCaml standard library. In
fact, Gospel embeds a (partially) specified version of the OCaml
standard librarywhere functions aremarked as purewhen they comply
with the above conditions, e. g. the (:::) function.

The model elements is no longer helpful in the type specification.
However, removing the type specification altogether is impossible since
it also carries its mutability information. By default, types with no
specifications are immutable; and the clauses modifies q would then
be invalid. When a type is mutable but carries no model, one can add
an ephemeral clause instead:

type 'a t

(*@ ephemeral *)

The resulting specification is presented in listing 2.4. By reducing
the amount of models, we improve our chances of being able to execute
the specification. However, as shown in the following chapters, this is
not always sufficient (or even necessary).
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2.3 example 3: union-find

In this third example, we specify an interface for a union-find data struc-
ture. Recall that a union-find data structure (sometimes also called
a disjoint-set data structure) is a data structure that stores a partition
of a set. Notable use cases are the Kruskal minimum spanning forest
algorithm, congruence closure algorithm for decision procedures in
SMT solvers, or register allocation in compilers.

This section shows a restricted version of union-find that stores parti-
tions of sets of the form ℕ𝑛. A more general version is presented in the
Gospel documentation [38]. However, its specification is not execut-
able by Ortac as it uses advanced features of Gospel (e. g. models,
ghost values and ghost arguments). In this section, we only use pure
projections in the specification. Here is the OCaml interface we want
to specify:

1 type t

2 (*** The type of union-find.

3 It stores a partition of {0, ..., n-1}, where n is

4 provided in [create]. *)

5

6 val size : t -> int

7 (*** [size t] is the number of elements in [t], i.e. the

8 argument provided to [create] during its creation. *)

9

10 val num_classes : t -> int

11 (*** [num_classes t] is the number of subsets contained

12 in [t]. *)

13

14 val create : int -> t

15 (*** [create n] is a fresh union-find of size [n]

16 representing {{0}, ..., {n-1}}. *)

17

18 val find : t -> int -> int

19 (*** [find t i] is the representative of [i] in [t]. *)

20

21 val union : t -> int -> int -> unit

22 (*** [union t i j] merges the subsets containing [i] and

23 [j] in [t]. *)

2.3.1 Specifying Effects

Most of the time, the simplest specification (and therefore an excellent
way to start writing one) consists of the set of effects provided in the
interface: which types are mutable, what functions have modifying
effects, what are the possible exceptions, etc.
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2.3.1 .1 Effects on the Type t

First, look at the type of union-find t. Although we do not expose
models, we can specify that this type is mutable (in particular, union
modify it in place). Similarly to the type of queues in the previous
section, we can state this using the ephemeral keyword.

type t

(*@ ephemeral *)

Since the type is mutable, we can also specify the functions that
modify it: in this interface, only union does: Arguably, if find

performs path
compression in the
implementation, it
also modifies its
argument. However,
it does it in a
non-observable way.

val union : t -> int -> int -> unit

(*@ union t i j

modifies t *)

2.3.1 .2 Exceptions and Pure Functions

Our functions do not raise exceptions, except for Invalid_argument,
when invalid integers are passed (integers that are outside the domain
of the union-find, i. e. not in ℕ𝑛), but we will come to that later. On the
other hand, the functions size, find, and num_classes are pure, so we
can mark them and use them in the rest of the specification.

2.3.2 Preconditions and Bound Validity

In the functions find and union, the integer arguments represent in-
tegers in the set the union-find represents. Therefore, some sort of
bound checking is necessary.

val find : t -> int -> int

(*@ j = find t i

requires 0 <= i < size t

pure *)

val union : t -> int -> int -> unit

(*@ union t i j

checks 0 <= i < size t

checks 0 <= j < size t

modifies t *)

Note that the same predicate is repeated three times. Although it
is pretty simple, one can easily imagine the problems it would cause
with more complex properties. We can define a logic predicate to avoid
repetitions:

(*@ predicate valid (t: t) (i: int) = 0 < i <= size t *)
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val find : t -> int -> int

(*@ j = find t i

requires valid t i

pure *)

val union : t -> int -> int -> unit

(*@ union t i j

checks valid t i

checks valid t j

modifies t *)

Similarly, create only makes sense for positive sizes. We can state it
using a requires or checks clause:

val create : int -> t

(*@ t = create n

checks n > 0 *)

2.3.3 Capturing the union Semantics in Postconditions

There are a few postconditions that we can specify using our pure func-
tions:

• (line 6) the representatives of the unioned elements are now the
same;

• (line 7) when 𝑘 is an integer in the union-find, then
– if it was in the class of 𝑖 or 𝑗, then it is now in the class of 𝑖

(and 𝑗),
– otherwise, its class remains unchanged;

• (line 13) the number of classes is not more than before the union;

• (lines 14–15) if the two elements were in different classes, then
the number of classes was decremented.

val union : t -> int -> int -> unit

(*@ union t i j

modifies t

ensures find t i = find t j

ensures forall k:int.

valid t k ->

if (find (old t) k = find (old t) i

|| find (old t) k = find (old t) j)

then find t k = find t i

else find t k = find (old t) k

ensures num_classes t <= num_classes (old t)

ensures find (old t) i <> find (old t) j ->

num_classes t = num_classes (old t) - 1 *)
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We can also extend the specifications for find, num_classes, and
create. The full specification is displayed in listing 2.5.

related work

Specification languages are not new. We may identify dozens of them,
but they all have different goals and constraints. For instance, some
have been designed for runtime assertion checking and are, therefore,
executable, while others focus on deductive verification and allowmore
expressivity. More generally, the destination of the language is critical
to the design decisions. Gospel is agnostic of its usage; it is meant to be
usable for both DV and RAC. A second aspect is whether specifications
are meant to be entirely discharged by automated tools, which may
impose a particular presentation style for specifications.

Eiffel [31] is the first programming language to embed behavioural
contract-based specifications. It is an object-oriented language that
provides class invariants, methods preconditions and postconditions,
and loop invariants, all embedded in the programming language. It
is designed for runtime assertion checking: its assertions and instruc-
tions are written in the same (obviously executable) language. Con-
tract violations are reported back to them when the user enables their
monitoring.

JML [7, 11, 25] is a behavioral specification language for Java which
is also executable. It is suitable for both runtime assertion checking and
deductive verification, e. g. via the OpenJML [15] project.

SPEC# [3] extends the C# programming language with support for
function contracts. AsmL [4, 5], then Code Contracts [2], imple-
ment similar yet less intrusive approaches for the .NET framework.

SPARK [8, 30] also integrates program specifications into its host
language, Ada.

The Frama-C [17] framework for the C language also provides a
specification language: ACSL [6]. The specifications are not necessar-
ily executable and were initially designed for deductive verification.
However, the E-ACSL plugin [18, 42] aims at identifying and translat-
ing an executable subset of ACSL for runtime assertion checking.

Another consideration on the design of specification languages is
how they treat the frame problem and how they describe the separation of
arguments and the freshness of return values. Specifications languages
such as SPARK, JML, or ACSL require explicit freshness assertions. In
Gospel, however, accessibility predicates, disjointness and freshness
assertions are always implicit and cannot be specified at this point,
although there is active work in that direction.

Some verification tools like Viper [32], Why3 [20], and Dafny [27]
also come with their own programming language on top of their spe-
cification language. Gospel, on the other hand, applies to a general-
purpose programming language rather than one dedicated to proof
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and verification. While they share some features, Gospel must remain
unintrusive and integrate into its host language. This approach can
add additional constraints; for instance, Gospel is not more express-
ive than OCaml when it comes to memory abstraction and cannot
mention memory locations explicitly.

conclusion

In these examples, we showed how Gospel lets us incrementally spe-
cify a simple function interface by addingmore details andprecisions as
the development continues. All the intermediary specifications make
sense to Gospel, even if they are partial, which helps to make its learn-
ing curve more gradual. The specification style may also vary depend-
ing on the use of the module, i. e. depending on the client to verify
constraints, adopting a defensive style, or a mix of both.

In contrast, Gospel intends to lightly and incrementally introduce
ideas taken from formal methods into the OCaml community. For in-
stance, Gospelmay be used in large projects to specify and verify some
critical core components while leaving other components unverified.
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1 (*@ open Sequence *)

2

3 type 'a t

4 (*@ mutable model elements: 'a sequence *)

5

6 exception Empty

7

8 val create: unit -> 'a t

9 (*@ q = create ()

10 ensures q.elements = empty *)

11

12 val push: 'a -> 'a t -> unit

13 (*@ push v q

14 modifies q

15 ensures q.elements = cons v (old q.elements) *)

16

17 val unsafe_pop: 'a t -> 'a

18 (*@ v = unsafe_pop q

19 requires q.elements <> empty

20 modifies q

21 ensures old q.elements = q.elements ++ (singleton v) *)

22

23 val pop_exn: 'a t -> 'a

24 (*@ v = pop_exn q

25 modifies q

26 ensures old q.elements = q.elements ++ (singleton v)

27 raises Empty -> q.elements = old q.elements = empty *)

28

29 val pop: 'a t -> 'a

30 (*@ v = pop q

31 checks q.elements <> empty

32 modifies q

33 ensures old q.elements = q.elements ++ (singleton v) *)

Listing 2.3: Queues specified with models.
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1 type 'a t

2 (*@ ephemeral *)

3

4 exception Empty

5

6 val elements: 'a t -> 'a list

7 (*@ pure *)

8

9 val create: unit -> 'a t

10 (*@ q = create ()

11 ensures elements q = [] *)

12

13 val push: 'a -> 'a t -> unit

14 (*@ push v q

15 modifies q

16 ensures elements q = v :: (old (elements q)) *)

17

18 val unsafe_pop: 'a t -> 'a

19 (*@ v = unsafe_pop q

20 requires elements q <> []

21 modifies q

22 ensures old elements q = (elements q) @ [v] *)

23

24 val pop_exn: 'a t -> 'a

25 (*@ v = pop_exn q

26 modifies q

27 ensures old elements q = (elements q) @ [v]

28 raises Empty -> elements q = old (elements q) = [] *)

29

30 val pop: 'a t -> 'a

31 (*@ v = pop q

32 checks elements q <> []

33 modifies q

34 ensures old elements q = (elements q) @ [v] *)

Listing 2.4: Queues specified with pure projections.
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1 type t

2 (*@ ephemeral *)

3

4 val size : t -> int

5 (*@ pure *)

6

7 (*@ predicate valid (t: t) (i: int) = 0 < i <= size t *)

8

9 val find : t -> int -> int

10 (*@ j = find t i

11 requires 0 <= i < size t

12 pure

13 ensures 0 <= j < size t *)

14

15 val num_classes : t -> int

16 (*@ c = num_classes t

17 pure

18 ensures c <= size t *)

19

20 val create : int -> t

21 (*@ t = create n

22 checks n > 0

23 ensures size t = n

24 ensures forall i:int. 0 <= i < n -> find t i = i

25 ensures num_classes t = n *)

26

27 val union : t -> int -> int -> unit

28 (*@ union t i j

29 checks 0 <= i < size t

30 checks 0 <= j < size t

31 modifies t

32 ensures find t i = find t j

33 ensures forall k:int. 0 <= k < size t ->

34 if (find (old t) k = find (old t) i

35 || find (old t) k = find (old t) j)

36 then find t k = find t i

37 else find t k = find (old t) k

38 ensures num_classes t <= num_classes (old t)

39 ensures find (old t) i <> find (old t) j

40 -> num_classes t = num_classes (old t) - 1 *)

Listing 2.5: Specified union-find interface.
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3
ORTAC: HANDL ING THE TOOL

In this chapter, we consider some OCaml module interfaces specified
with Gospel and show what Ortac does and how to apply it. Let
us consider a variant of the Fibonacci module presented in listing 2.1
where the interface now exposes two functions: (a) fib is the same as
presented previously; (b) fib_all returns all the Fibonacci numbers
up to its argument in an array. We present its interface in listing 3.1.

(* This function is a specification helper. *)

(*@ function rec fibonacci (n: integer) : integer =

match n with

| 0 -> 0

| 1 -> 1

| i -> fibonacci (i - 1) + fibonacci (i - 2) *)

val fib : int -> int

(*** [fib n] is the [n]th Fibonacci number. *)

(*@ r = fib n

requires fibonacci n <= Int.max_int

checks 0 <= n

ensures r = fibonacci n *)

val fib_all : int -> int array

(*** [fib_all n] is an array containing the [n+1] first

Fibonacci numbers. *)

(*@ a = fib_all n

requires fibonacci n <= Int.max_int

checks 0 <= n

ensures Array.length a = n + 1

ensures forall i, 0 <= i <= n -> a.(i) = fibonacci i

Listing 3.1: The interface of Fibonacci augmented with fib_all.

Internally, fib is implemented by calling fib_all and returning the Of course, fib’s
memory complexity
is suboptimal, but
this is not relevant to
the discussion in this
chapter.

last value, as shown in listing 3.2.
If we aim to verify these specifications at runtime, we need a full pro-

gram that we can execute. Let us write a simple client for the Fibonacci

33
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let fib_all n =

let fm2 = ref 0 in

let fm1 = ref 1 in

Array.init (n + 1) (function

| 0 -> 0

| 1 -> 1

| i ->

let fi = !fm1 + !fm2 in

fm2 ::= !fm1;

fm1 ::= fi;

fi)

let fib n = (fib_all n).(n)

Listing 3.2: The implementation of Fibonacci with fib_all.

module: it reads an integer on the command line, passes it to fib, and
prints out the result.

let () =

Sys.argv.(1)

||> int_of_string

||> Fibonacci.fib

||> Printf.printf "%d\n"

The structure of our program is depicted in figure 3.1.
Remark 3. We chose this interactive client for educational purposes, but
the contents of the client do not matter for Ortac. Although clients
may have different verification needs (see sections 3.1.2 and 3.2 for
more insight about this), the tool can apply to arbitrary clients e. g.
other libraries, servers, or unikernels.

fibonacci.mli

fibonacci.ml

client.ml

Figure 3.1: Structure of the fib program.

Once the build system is correctly configured, we may compile and
execute it:

$ dune build

$ ./fib 10

55

Our program is now ready for instrumentation using the ortac ex-
ecutable tool, the main entry point of this work. It is intended for
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specification writers who want to instrument their code as described
earlier. We show how to use it and interpret its results in section 3.1
On the other hand, Ortac also comes as a library intended for tool
developers who want to extend Ortac or write new tools based on
Gospel. We show examples of these use-cases in section 3.2.

3.1 the ortac instrumentation tool

When using Ortac, the instrumented program has the structure de-
picted in figure 3.2. The ortac tool reads interface files annotated
with Gospel specifications (e. g. fibonacci.mli) and produces cor-
responding OCaml code that checks them in an implementation file
(fibonacci_rac.ml). It does not modify the original implementation
of the modules (fibonacci.ml). Instead, it creates wrappers around
the functions exposed in the initial modules that verify the specific-
ation clauses. For instance, the wrappers verify the preconditions,
call the original functions, and check the postconditions. The newly
formed modules (fibonacci_rac.ml) have the same interface as the
original (fibonacci.mli) but overrides the exposed values with the
instrumented ones. Their interface file (fibonacci_rac.mli) is ob- The generated

module may contain
more values than the
original one, but
these are only needed
for the verifications
and need not be
exposed.

tained by a simple copy. In order to make the verifications and have
proper error reporting, the generated code depends on ortac-runtime,
a lightweight library provided with Ortac. It contains various help-
ers implementing the Gospel standard library or handling errors, for
example.

fibonacci.mli

fibonacci.ml

fibonacci_rac.mli

fibonacci_rac.ml

ortac-runtime

client.ml

copy
Ortac

Provided by the user Automatic generation
Automatically generated Runtime dependency
Provided with Ortac

Figure 3.2: Structure of the instrumented fib program.

Remark 4. Ortac never reads the implementation files at any point
(either to get additional information or to modify implementations)
and always respects the abstraction barrier of the interfaces of the mod-
ules.

Since Ortac createswrappers instead ofmodifying the existing code,
it does not check the specifications of the calls internal to the module.
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The figure 3.3 shows the call paths in our example. Note how the fib
instrumented function never calls the instrumented fib_all function:
it always calls the uninstrumented one.

let fib_all =

.....

let fib n =

.....

fib_all n

.....

Fibonacci.ml

let fib_all n =

.....

Fibonacci.fib_all n

.....

let fib n =

.....

Fibonacci.fib n

.....

Fibonacci_rac.ml

Provided by the user
Automatically generated

Runtime dependency

Figure 3.3: Internal calls in the Fibonacci module.

This behaviour aligns with how interfaces conceptually fit the code
structure in OCaml: internal calls do not ‘go through’ the interface.
For instance, (a) one can call internal functions without exposing them
at all; (b) even when exposed, their type might be different internally
than the one declared in the interface.

a note on verifying internal calls. Verifying the internals call
would require reading and modifying (or creating a modified copy)
the implementation files to replace the calls with calls to instrumented
versions. Implementing this would be challenging.

First, it is not a simple syntactic operation since one can use the same
symbol for different values: typing is necessary for name resolution.
Currently, Ortac does not need typed implementation files since it
does not read them. On the technical front, implementing this is chal-
lenging. On the one hand, using the outcome of the OCaml compiler is
not straightforward as it requires parsing the compilation artefacts and
plugging Ortac in the middle of the compilation chain (rather than a
preprocessor right now). On the other hand, re-implementing OCaml
typing independently (or extracting it from the compiler sources) is
daunting and hard to maintain.

Regardless of the technical aspects of implementing this, checking
the internal calls only makes sense if the internal type is compatible
with the specification type. In that case, Ortac would have to ignore
some of the internal calls, which we believe hurt the clarity of its results.



3.1 the ortac instrumentation tool 37

Example 1. Consider the following interface:

val id : int -> int

(*@ y = id x

ensures x + 1 = y + 1 *)

implemented with let id x = x. One can call this function id

internally on any type (in particular, not integers), but its spe-
cification assumes integer values. For such internal calls, there is
no meaningful specification to check.

3.1 .1 Usage

The tool expects a positional argument: the filename of an OCaml
interface file (a .mli file) annotated with Gospel specifications. It
outputs the instrumented code (a .ml file) on the standard output or
in a file provided with the -o argument.

$ ortac fibonacci.mli > fibonacci_rac.ml

$ ortac fibonacci.mli -o fibonacci_rac.ml

static checks failures. At this stage, Ortac (a) assumes that the
interface file and its corresponding implementation file (if any) are
accepted by the OCaml compiler; (b) checks that the specifications are
well-formed and reports the same errors as gospel check otherwise;
(c) checks that the specifications are executable and emits warnings
otherwise. For instance, when fedwith the interface of queues specified
with models (see listing 2.3), Ortac emits a series of warnings since
these models are not supported.

$ ortac queue_models.mli -o queues_models_rac.ml

File "queue_models.mli", line 4, characters 19-39:

Warning: the model elements attached to the type t is not

supported.

File "queue_models.mli", line 10, characters 13-30:

Warning: the predicate q.elements = empty references the

model elements, which is not supported. It will not be

checked.

File "queue_models.mli", line 15, characters 13-48:

Warning: the predicate q.elements = cons v (old

q.elements) references the model elements, which is not

supported. It will not be checked.

.....

Even if the specification is not fully executable by Ortac, it still instru-
ments the code to check as much as possible. For instance, although
it cannot check any clause involving elements, it will still check for
unexpected exceptions raised by the functions.
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Ortac does not create the corresponding interface file itself. Since
the instrumented code has the same signature, users may do it trivially
by copying the original one.

$ cp fibonacci.mli fibonacci_rac.mli
In some cases where

types are exposed,
users may need to
add type aliases

manually signal that
the types in the
original and the
instrumented

modules are the
same.

Now that we have an instrumented version of the Fibonaccimodule,
wemay reuse our client and replace it with the Fibonacci_racmodule
to check the specifications at runtime:

let () =

Sys.argv.(1)

||> int_of_string

||> Fibonacci_rac .fib

||> Printf.printf "%d\n"

The project now has the structure presented in figure 3.2. We can build
it with no modification to the build system parameters.

$ dune build

When the specifications are satisfied, the instrumented code provides
the same result as the original one: The verifications, however, are
not cost-free: one may notice a performance impact when using the
instrumented module.

$ ./fib 10

55

However, when a specification is unsatisfied, the instrumented code
stops the program and reports the violations to the user. Here are a
few examples of error messages provided by the instrumented code.

precondition and postcondition violation. Let us start with
a faulty call to fib, i. e. a call that violates the function’s precondition.
If we pick a large enough argument 𝑛, then the 𝑛th Fibonacci number
exceeds Int.max_int. Ortac implements Gospel integers with arbit-
rary precision integers using the zarith library, which lets it detect
integer overflows:

$ ./fib 4242

File "fibonacci.mli", lines 8-13, characters 0-30:

Runtime error when executing fib 4242:

- the precondition

fibonacci 4242 <<= Int.max_int

did not hold.

The error message provides the following information: (a) the loca-
tion of the specification that was violated; (b) the faulty call, with its
arguments when Ortac inferred a way to print them (see chapter 6
for more details); (c) the nature of the failures—here, a predicate didWhen Ortac

cannot print the
arguments, it uses

the names present in
the specification.

not hold—; (d) the faulty clauses—there is only one here, but all the
failures are reported when multiple clauses are violated.
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Remark 5. Unfortunately, there is no way of providing the location of
the caller instead of the callee in the error message without modifying
the client code. It is, however, still possible to retrieve this information
by enabling OCaml’s backtrace printing.

unexpected and invalid exceptions. Recall that functions can-
not raise exceptions unless specified otherwise with a raises clause.
Ortac catches unexpected exceptions and reports them to the user.
For instance, if our function fib was to raise a Failure exception, it
would be reported as follows:

$ ./fib 0

File "fibonacci.mli", lines 8-13, characters 0-30:

Runtime error when executing fib 0:

- the call raised an unlisted exception:

Failure.

When an exceptional postcondition is associatedwith the exception, the
instrumented code also checks it. If the exception is correct with respect
to the specification, it is re-raised as if the code was not instrumented.

failure to check a specification. Users may encounter reports
related to the behaviour of Ortac-instrumented code when it fails to
execute the specification, i. e. when its execution itself raises an excep-
tion. When that happens, the failure is reported to the user, but it does
not stop the execution of the program. Indeed, the instrumented code
could not verify the clause, so we cannot deduce anything from it at
this point: it may or may not hold. In other words, it is treated as a
warning.

$ ./fib 424242

File "fibonacci.mli", lines 8-13, characters 0-30:

Warnings when executing fib 424242:

- the evaluation of the precondition

fibonacci 424242 <<= Int.max_int

raised an exception:

Stack_overflow.

It could not be checked.

- the evaluation of the postcondition

3202736562209518488 = fibonacci 424242

raised an exception:

Stack_overflow.

It could not be checked.

3202736562209518488

The exceptions raised by the verifications themselves are discussed in
more detail in section 6.3.1.
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Remark 6. The definition provided for fibonacci has terrible perform-
ances. It is fine: specifications should be clear, simple and as close as
possible to the properties they translate. In Ortac, we try not to en-
courage users to care about the efficiency of the definitions. Instead, weThe automatic

memoization can be
disabled with the

---no-memo option.

automatically generate memoized versions of user-provided recursive
functions. Therefore, the execution of fib 100 terminates instantly.

defensive strategy not enforced. When the specification has
some defensive preconditions (checks clauses), then the instrumenta-
tion checks that the function indeed raises Invalid_argument if such
a precondition does not hold:

$ ./fib -10

File "fibonacci.mli", lines 8-13, characters 0-30:

Runtime error when executing fib -10:

- the evaluation of the precondition

fibonacci 424242 <<= Int.max_int

raised an exception:

Stack_overflow.

It could not be checked.

- the checks precondition

0 <<= -10

did not hold.

The function should have raised Invalid_argument.

The first message is a warning concerning the requires precondition,
as we discussed in the last paragraph: when executed with negative
input, it indeed overflows the stack. The second message is about the
checks precondition violation.

The instrumentation also checks for false positives and reports if the
function incorrectly raises Invalid_argument. For instance, if fib was
to raise Invalid_argumentwhen provided the input 0, the user would
get the following message:

$ ./fib 0

File "fibonacci.mli", lines 8-13, characters 0-30:

Runtime error when executing fib 0:

- the call raised Invalid_argument,

but none of the checks preconditions

- 0 <<= 0

were violated.

You can read more about the instrumentation of defensive precondi-
tions in section 6.3.2.2.

3.1 .2 Checking Mode

By default, the instrumentation verifies as much of the specification
as Ortac is able to translate. This is usually a good default when de-
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veloping software with Gospel and Ortac. However, there are cases
where some verifications are better disabled depending on the perform-
ance requirements or the use of the instrumented modules. Therefore,
Ortac users may choose amongst multiple verification modes corres-
ponding to different instrumentation levels. The mode is given using
the ---mode Command Line Interface (CLI) argument, or mode option
in .ortac.

$ ortac --mode=<mode>

no checks. The mode nop is trivial: it does not perform any verific-
ation at all. The ‘instrumented’ module re-exposes the original module
without modifications. Although the relevance of this mode seems
questionable, there are two reasons why this mode is available: (a) it
lets the user control the executability of their specification, as Ortac
still issues warnings; (b) from a development workflow perspective,
the developer can keep referring to the *_rac modules in the client
code, regardless of whether they want the verifications enabled or not,
rather than having to change these references in the code.

exceptions only. The mode exceptions only monitors the excep-
tions raised by the instrumented functions. Optionally (the mode is
then exceptions-cond), it can check that the associated conditions
hold when they exist. It is a relatively lightweight instrumentation,
and results are generally easy to interpret. These verifications help
diagnose implementations using exceptions since the OCaml type-
checker brings few static guarantees regarding exceptions. Not only do See [28] for an

attempt at including
exceptions in OCaml
types.

exceptions not appear in the function’s types, but they can also escape
the scope where they are defined, even if when are not declared in the
module interfaces.
Remark 7. When the verification of the associated conditions is enabled,
it would be naive to consider that ‘it only costs something when the
function raises an exception’. Indeed, we show in chapter 5 and sec-
tion 6.3.2.2 how the old primitives or the checks clauses will trigger
(potentially costly) computations regardless.

preconditions only. In themode requires, Ortac onlymonitors
the functions preconditions in requires clauses and ignores the rest.
It is particularly interesting for library developers, as the correction
obligation created by these conditions relies on the caller, i. e. the library
client. Once their libraries are appropriately tested (or proved correct
using another tool!), developers can release their libraries with those
preconditions monitored and ensure that the users correctly use them.

postconditions and invariants. On the other hand, one can also
enable the monitoring of the obligations created for the callee, i. e. the
instrumented module, with the mode ensures. It turns all the tests on:
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preconditions, postconditions, exceptions, type invariants at functions
entry and exit, etc.

toggling the verifications. The user decides the level of checks
statically when they invoke the ortac executable. The mode defines
the kind of instrumentation that Ortac generates and the verifications
embedded in the final executable. However, regardless of the level of
verifications, users can toggle these verifications dynamically (a) be-
fore running each function, ortac-runtime reads the ORTAC_DISABLE
environment variable and turns off the tests when it is set to a truthy
value; (b) at any point during the execution, users may toggle the veri-
fications by sending the SIGUSR1 POSIX signal to the instrumented
process to enable the tests, or SIGUSR2 to disable them. When using
this feature, the verifications are not simply silenced; they are fully dis-
abled, meaning they do not cost any resources besides checking the
environment variable.

Dynamically toggling the tests or monitoring for specific runs or
specific parts of the execution is interesting, particularly in regard with
the performance-guarantees tradeoff. As mentioned earlier, although
Ortac has some optimizations implemented, the cost of verifications
can still be high, and having all the verifications running at all times
may not be feasible.

For instance, it is often interesting to run functional tests (with veri-
fications enabled) and performance tests (with verifications disabled)
during the same feedback loop. In that case, setting the environment
variable is enough to change the context instead of recompiling the
executable. Another possible use case is when only some operations
are critical and should be monitored, but they are not segregated in the
codebase and cannot be instrumented separately. One can then toggle
the tests before and after this specific operation from the client using
an environment variable or an external process using the signals.

3.2 using the ortac library: other frontends

Thus far, we presented the default instrumentation provided by the
ortac executable, which stops the program by raising an exception
and displays a (hopefully helpful) error message as soon as a specific-
ation violation is detected. Although it is sometimes possible to catch
this Ortac_runtime.Error exception and silence the error message to
handle it differently, we find this default behaviour is too specialized
and prevents other exciting use cases. Therefore, Ortac also provides
a library that lets developers customize the instrumentation to imple-
ment different verification policies. These alternative instrumentations
(we call them frontends) can then be compiled into plugins for the ortac
executable. The user provides them to ortac through a CLI argument
or an option of the same name in .ortac.
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$ ortac --frontend=<frontend>

3.2.1 Automated Testing, a.k.a. Fuzzing

Using RAC for testing during the development phase of the software
is its most obvious use case. Ortac automates the assertion checking.
However, the developer is still responsible for organizing the testing
suites and writing relevant test cases that expose potential misbeha-
viours or trigger edge cases. Organizing the tests often consists in writ-
ing a decent amount of ‘boilerplate code’ using a test framework, and
finding edge cases is a tedious task. It is easier to find

edge cases when the
implementation is
known or when a
bug is already
detected, but testing
is much more about
discovering bugs.

The goal of the monolith frontend is to fully automate these extra
steps in the context of fuzz testing (or fuzzing), so developers only have
to write down the properties that the implementation should satisfy,
and the rest is automated. The frontend presented in this section is
extracted from joint work with Nicolas Osborne, whom I supervised
during his internship.

fuzzing and afl-fuzz. Fuzz testing is a group of techniques aim-
ing at automating the test case elaboration phase. It consists in feeding
the program under test with randomly generated data and observing
crashes. In this frontend, we use the afl+++ [21] fuzzer to generate
this data. It is a grey-box fuzzer: it requires instrumented compiled afl+++ is the

successor—and a
fork—of the
afl-fuzz

fuzzer[44].

code (the +afl compiler variant provides such instrumentation) to
maximize the exploration of the universe of possible executions. It is
mutation-based: it initially generates random data, then mutates it to
explore different execution paths at each iteration and try to find buggy
ones.

monolith. The fuzzer feeds the program under test with the bytes
it generates and observes program crashes. Some ‘glue’ is needed to
interface it to the OCaml libraries under tests: they require more—
or differently—structured data and are not designed to stop the pro-
gram (tests are!). The Monolith[36, 37] library is a model-based
testing framework that does just that. Other testing frameworks inter-
face OCaml tests with the Afl generator, such as Crowbar [19]. We
did not identify any obstacle to writing a similar frontend for Crow-
bar in place of Monolith. Monolith requires as input twomodules
with the same signature, a ‘reference’ and a ‘candidate’, along with a
dynamic representation of that signature. It processes the afl bytes
to generate an execution scenario, i. e. a list of function calls and along
with their arguments that are possibly chained. It then executes this
scenario for both the reference and the candidate and crashes when it
sees discrepancies so that the fuzzer can see and report the failure.

The monolith frontend for Ortac leverages the typing information
to generate the dynamic representations of the signature. It then uses
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the original implementation as the candidate and the wrapper gen-
erated by ortac as the reference, containing the expected behaviour
information. The wrapper has to be slightly modified though: since
monolith will feed random data to the tested interface, some of this
data will likely not comply with the preconditions. Precondition viol-
ations, therefore, should not be reported as errors. Instead, they are
reported to monolith (and in turn to afl) as ‘bad input’, letting them
know that the corresponding execution path is not relevant and should
be ignored in the subsequent tests.

what is tested. In summary, this frontend tests that the instru-
mented and original codes behave the same, which is the case when
the program is correct. It reports discrepancies between the two; three
kinds of differences may appear:

• The original module terminates normally (i. e. not with an excep-
tion), but the instrumented module raises an exception. In that
case, the instrumented module caught a specification violation
and reported it: if Ortac is correct (we hope it is!), we likely
found a bug in our code.

• The original module raises an exception, but the instrumented
module exits with a value. This case should not happen and
shows that the code generated by Ortac is incorrect.

• The originalmodule and the instrumented one both return values,
but they are different. Again, the Ortac instrumentation is faulty
in that case.

These last two cases should never occur in released versions of Ortac.
It was, however, useful to test Ortac itself during its development
stages.

The frontend generates a full program ready to be executed as a
standalone executable—in that case, it will use fully random data—or
via the fuzzer for better results.

# random mode

$ ./main

# fuzzing mode with afl

$ afl+++ -i inputs/ -o outputs/ -- ./main

In both cases, Monolith provides inputs to the annotated functions
and reports errors in the directory outputs/crashes as replayable scen-
arii. The user can replay the scenario by passing the corresponding file
name to the generated program as an argument to get more inform-
ation about misbehaviour. This way, the user has access to—and can
replay—the failure scenario and all the errors reported by ortac on
these specific inputs, highlighting the broken specifications.
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$ ./main outputs/crashes/<filename>

File "fibonacci.mli", lines 8-13, characters 0-30:

Runtime error when executing fib 4242:

- the precondition

fibonacci 4242 <<= Int.max_int

did not hold.

limitations. The experiments conducted so far have been under-
whelming. Fuzzing is famously hard to predict: it relies on the fuzzer’s
ability to analyze the program structure correctly and generate the rel-
evant test cases. Mutation-based fuzzers generally perform [29] mildly
at this task. We identify three reasons why fuzzing is made even harder
in the case of this Ortac frontend:

• The instrumentation we generate can be oversized and is branch-
ing by nature, which grows the space of execution paths very
quickly.

• The cost of this instrumentation is sometimes important, which
reduces the number of execution cycles afl can perform in a given
timeframe and thus reduces its ability to test data mutations.

• When the specification contains preconditions, it can be tricky
(or impossible) for the pseudo-random generators to produce
compliant data, and most of the executions triggered by afl end
up being marked as non-significant. One solution would be to let
the user provide their own (specification-compliant) generators
manually rather than using entirely random ones, but this is not
currently available in Ortac.

More recently, Nicolas Osborne and Samuel Hym have been devel-
oping another automated testing frontend for Ortac named qcheck-
stm. It relies on QCheck [16], a property-based testing framework
inspired by Haskell’s Quickcheck [13].

3.2.2 Monitoring

Another interesting derived use-case of the instrumentations is the use
of RAC tomonitor long-running applications (e. g. servers) and provide
reports on their execution.

On top of reporting specification violations, it reports the ordinary One could write a
very similar frontend
to aggregate statistics
about the execution
and expose them in a
Prometheus
server, for instance.

events of the execution, particularly function calls, their arguments and
return values, and successful verifications. When a specification ap-
pears violated, it logs the events (with a different logging level) rather
than stopping the program.

These reports are meant to be aggregated in a file for further inspec-
tion after the end of the execution (or the failing verifications). Users
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can easily customize the log format by programming it in the client
code.

The results provided by this frontend should be treated with caution.
When multiple violations are reported, they cannot be considered in-
dependently: once the program fails once, the subsequent execution as
a whole is faulty to the specification.

related work

wrappers and internal calls verifications. In section 3.1, We
discussed why Ortac does not verify internal function calls. However,
many existing tools [14, 30, 41] do provide this feature. The main dif-
ference lies in the specification and host languages and their design
choices. The OCaml language has a strong concept of abstraction as-
sociated with the interfaces, which is also applied by Gospel (and
therefore Ortac) by specifying the interfaces rather than the implement-
ations. Instead, ACSL, JML or SPARK specifications are much closer
to the implementation, both by their locations—they are located in the
implementation—and their constructs—some even feature loop invari-
ants, local assertions, or code locations. For these tools, instrumenting
the original code is amuchmore reasonable option that also gives them
the ability to check finer properties if they need to (e. g. type invariants
inside function bodies or internal calls)

partial verifications. The idea of providing different levels of
instrumentation (see section 3.1.2) for different use-cases or stages of
the development already existed in the Design by Contract™ approach
presented through and implemented by Eiffel [31]. The RAC tool
provided by OpenJML provides options to turn off some checks but
based on different criteria [14]. For instance, one relies on OpenJML
being able to distinguish internal calls from external ones and turns
off the verifications for internal calls. E-ACSL provides a script that
generates both an instrumented and un-instrumented version but does
not allow more granularity [41]. In any case, none of these tools can
dynamically turn the verifications on or off at runtime.

monitoring mode. Both E-ACSL and OpenJML have a keep-

going option that lets the program run even if a violation occurs, but
they do not provide a complete trace log with function calls and suc-
cessful verifications.







4
SETT ING UP THE WORKBENCH : M ICROSPEL , A TOY
LANGUAGE

In the following chapters, we will dive into the transformations that
Ortac operates to correctly identify the executable parts of a Gospel
specification and produce OCaml code that checks them at runtime.

Ortac aims at covering as much of the OCaml language as pos-
sible and relies on external libraries, e. g. ppxlib to manipulate the
OCaml AST. Therefore, completely formalizing and proving it would
be a daunting task with questionable relevance. We also hope that this Gospel, Ortac,

and OCaml itself
are rapidly moving
targets that are
expected to keep
evolving in the
upcoming years.

work can apply to other runtime assertion checkers for other languages,
and thus prefer to simplify our approach by modeling Ortac’s beha-
viour using a more abstract language.

In this chapter, we introduce Microspel, a simple specification lan-
guage attached to black-box programs to model the behaviour of im-
perative interfaces annotated with logic contracts. We will later use
this language to formalize and prove the instrumentation that Ortac
produces. We believe it is generic enough to enable detailed reasoning
about the semantics and memory models of OCaml and Gospel. We
use it in the following chapters to describe some of the instrumenta-
tion techniques implemented in Ortac in a way that is generalisable
to other programming languages where similar issues arise.

4.1 programs

Let us set up the context for Microspel specifications. We want to
consider programs that:

• can read data and perform side-effects on their environment;

• can have non-deterministic behaviour;

• do not expose their implementation, and only allow observing
the inputs and outputs of its executions;

4.1 .1 Program Values and Program States

Programs operate via effects (i. e. reading orwriting) on program states 𝑆
during their execution. This section defines program values and states.

49
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4.1.1 .1 Program Values

The program values 𝑣 handled by our language can be either integers 𝑛
or addresses 𝑎.

𝑣 ∶∶= 𝑛 integer
| 𝑎 address

The addresses point to locations in a memory that depends on the
program state.

4.1 .1 .2 Program States

The program states are the execution environment of the program.
They consist of variable bindings that associate variables to values
(function 𝑉), and memory bindings that associate memory addresses
to sequences of values that represent arrays or tuples (function 𝑀).

𝑉 ∶∶= 𝑥 ↦ 𝑣
𝑀 ∶∶= 𝑎 ↦ [𝑣, … , 𝑣]
𝑆 ∶∶= 𝑉 × 𝑀

These functions are partial (not all variables and addresses are boundOne could consider
that these functions
are total, but return
garbage outside their

domain. This
distinction is not

relevant to us, as we
will ensure memory
access is always safe.

in a program state); we note 𝑑𝑜𝑚(𝑉) (resp. 𝑑𝑜𝑚(𝑀)) their domain, i. e.
the set of variables (resp. addresses) where they are defined.
Notation 1. For the sake of conciseness, we always assume the notation
𝑆 = (𝑉, 𝑀) in the rest of this thesis, which means 𝑉 (resp. 𝑉′, resp. 𝑉1)
is the variable function associated to the state 𝑆 (resp. 𝑆′, resp. 𝑆1).

Example 2 (Simple program state). The state 𝑆0 contains three
variables: (a) the variable 𝑥 is bound to an integer which value is
0; (b) the variable 𝑦 is bound to an integer array of size 3; (c) the
variable 𝑧 is bound to a tuple of size 5 containing both integers
and integer arrays.

𝑉0 ∶ 𝑥 ↦ 0
𝑦 ↦ 𝑎𝑦

𝑧 ↦ 𝑎𝑧

𝑀0 ∶ 𝑎𝑦 ↦ [1, 3, 4]
𝑎𝑧 ↦ [5, 𝑎0, 𝑎1, 7, 4]
𝑎0 ↦ [0, 0, 0]
𝑎1 ↦ [1, 1, 1]

In the graphical representation, we ignore addresses, and we
replace them with arrow pointers, as the addresses themselves
are irrelevant to the understanding of the state structure.
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𝑥 ↦ 0

1 3 4𝑦

5 7 4𝑧

0 0 0 1 1 1

Note that states may also contain aliased values, i. e. distinct point-
ers values that point to the same address in memory, as shown in the
following example.

Example 3 (States with aliases). The state 𝑆1 binds a single vari-
able 𝑥 to a tuple containing aliases.

2 3 0 8 3𝑥

0 0 0

Notation 2. For the sake of clarity, we will only show states using their
graphical representation in the following from now on.

state inclusion. Let us define a partial order over program states
for inclusion. It is useful to later describe the semantics of Microspel
specifications. We say that 𝑆0 is included in 𝑆1 whenever all the bind-
ings in 𝑆0 are also in 𝑆1.

Definition 1 (State inclusion). Let 𝑆0 and 𝑆1 be two states. 𝑆0 is in-
cluded in 𝑆1, and we note 𝑆0 ⊑ 𝑆1, when:

(a) 𝑉0 is included in 𝑉1 (we note 𝑉0 ⊑𝑉 𝑉1 ): for all variables 𝑥 in
𝑑𝑜𝑚(𝑉0), we have 𝑥 ∈ 𝑑𝑜𝑚(𝑉1) and 𝑉0(𝑥) = 𝑉1(𝑥);

(b) 𝑀0 is included in 𝑀1 (we note 𝑀0 ⊑𝑀)𝑀1): for all addresses 𝑎
in 𝑑𝑜𝑚(𝑀0), we have 𝑎 ∈ 𝑑𝑜𝑚(𝑀1) and 𝑀0(𝑎) = 𝑀1(𝑎).

well-formed states. Not all states—and this is especially relevant
for initial states—are valid states for evaluating programs. A program
state is well formed when its variables and memory do not contain
dangling addresses. In other words, all addresses point to well-defined
memory locations.

Definition 2 (Well-formed program states). A program state (𝑉, 𝑀)
is well formed when:

(a) for all variable 𝑥 such that 𝑉(𝑥) = 𝑎, we have 𝑎 ∈ 𝑑𝑜𝑚(𝑀);
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(b) for all address 𝑎 such that 𝑀(𝑎) = [𝑣0, 𝑣1, … , 𝑣𝑛−1], and for all 𝑣𝑖
that is an address, we have 𝑣𝑖 ∈ 𝑑𝑜𝑚(𝑀).

We note 𝑤𝑓 (𝑆) when 𝑆 is well formed. The notation 𝑤𝑓 (_) will also
be used for other good formation definitions, but the context should
always make the disambiguation immediate.

This definition is consistent with the guarantees provided by theThere are always
ways to trick the type

system, e. g. using
the Obj module or
some unsafe_*
functions for the

standard library, or
even C bindings.

OCaml type system, which ensures that all pointers in memory are
initialized before being accessed.

4.1 .2 Programs

A program 𝑝 is a relation between two states, noted 𝑝 . An execution of
𝑝 is noted 𝑆 𝑝 𝑆′. In this context, we refer to 𝑆 as the pre-state of the
execution and 𝑆′ as the post-state of the execution.

Programs implementations details are not relevant in ourmodel, and
this definition lets us abstract away from it. We ensure that our model
language does not let us inspect the program implementation, since
Ortac also has this design constraint.

Example 4 (Counter increment). The program 𝑝𝑖𝑛𝑐𝑟 increments
the value contained in the variable 𝑥.

𝑆 𝑝𝑖𝑛𝑐𝑟 𝑆′ ⟹ ∃𝑛.𝑉(𝑥) = 𝑛 ∧ 𝑉′(𝑥) = 𝑛 + 1

The following shows a sample execution of 𝑝𝑖𝑛𝑐𝑟:

𝑥 ↦ 3
𝑝𝑖𝑛𝑐𝑟 𝑥 ↦ 4

Example 5 (Array sorting). The program 𝑝𝑠𝑜𝑟𝑡 sorts the array
bound to the variable 𝑥 in-place according to an 𝑖𝑠_𝑠𝑜𝑟𝑡𝑒𝑑 pre-
dicate.

𝑆 𝑝𝑠𝑜𝑟𝑡 𝑆′ ⟹ ∃𝑎. 𝑉(𝑥) = 𝑉′(𝑥) = 𝑎 ∧
𝑖𝑠_𝑠𝑜𝑟𝑡𝑒𝑑(𝑀′(𝑎)) ∧
𝑖𝑠_𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑀′(𝑎), 𝑀(𝑎))

Note that defining programs as relations between states—rather than
functions from states to states—does not prevent a program from as-
sociating multiple post-states to the same pre-state. Therefore, this
semantics accounts for possibly non-deterministic programs.
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Example 6 (Greater array). The program 𝑝𝑔𝑟𝑒𝑎𝑡𝑒𝑟 replaces the cells
in the integer array 𝑥 with greater values.

𝑆
𝑝𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑆′ ⟹ ∃𝑎, 𝑛0, 𝑛′

0, … , 𝑛𝑛−1, 𝑛′
𝑛−1.

𝑉(𝑥) = 𝑉′(𝑥) = 𝑎 ∧
𝑀(𝑎) = [𝑛0, … , 𝑛𝑛−1] ∧
𝑀′(𝑎) = [𝑛′

0, … , 𝑛′
𝑛−1] ∧

∀𝑖 ∈ ℕ𝑛.𝑛𝑖 ≤ 𝑛′
𝑖

The two following executions share the same initial state and have
different post-states, but are both valid.

2 3 0 8 3𝑥 𝑝𝑖𝑛𝑐𝑟 3 3 0 8 3𝑥

2 3 0 8 3𝑥 𝑝𝑖𝑛𝑐𝑟 3 5 0 8 19𝑥

Remark 8. The examples 4 to 6 define classes of programs, rather than
single programs, as their definitions do not specify the program effects
outside of 𝑥.

For instance, the following execution is also valid for a program 𝑝𝑖𝑛𝑐𝑟.
Besides modifying 𝑥, it creates variable a variable 𝑦 and modifies 𝑧’s
contents:

𝑥 ↦ 0

2 3 0 8 3𝑧

0 0 0

𝑝𝑖𝑛𝑐𝑟

1 3 4𝑦

𝑥 ↦ 1

2 3 0 8 3𝑧

0 4 0 0 0

Note that 𝑝𝑖𝑛𝑐𝑟 may or may not modify the contents of 𝑧, and it can
even remove or add new bindings in the program state, as it does in
this example.

well-formed programs. Programs are well-formed, when they
maintain the good formation of states.

Definition 3 (Well-formed programs). Aprogram 𝑝 is well formed (we
write 𝑤𝑓 (𝑝)) when, for all states 𝑆 and 𝑆′ such that 𝑤𝑓 (𝑆) and 𝑆 𝑝 𝑆′,
we have 𝑤𝑓 (𝑆′).
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4.2 program specifications

A program specification 𝑠𝑝 ismade of four parts: (a) variable declarations
that define the program domain; (b) a subset of these variables that the
program may modify during its execution; (c) additional identifiers
introduced by copying the result of terms evaluation before the program
starts; (d) a predicate that the program must satisfy after its execution,
i. e. a post-condition.The predicate 𝑃 may

use identifiers from
both a and c. 𝑠𝑝 ∶∶= domain 𝑥:𝜏, 𝑥:𝜏, …, 𝑥:𝜏;

modifies 𝑥, 𝑥, …, 𝑥;
let 𝑥, 𝑥, …, 𝑥 = copy (𝑡, 𝑡, …, 𝑡) in

ensures 𝑃
Microspel does not differentiate program arguments, return val-

ues, or global variables; all of these are part of the program’s domain
and are treated the same.

In the following, we describe inmore details the components of these
specifications.

4.2.1 Types

The types appearing in the domain specification (a) reflect those of
the data manipulated by the program, i. e. they can be an integer, a
homogeneous array—i. e. containing a single type of values—or a het-
erogeneous tuple.

𝜏 ∶∶= int integer
| 𝜏 array array
| 𝜏 * … * 𝜏 tuple

4.2.2 Terms

The purpose of terms is to read program states in the logic space. They
can appear in the post-condition (d) to express computations about the
program states, or in the additional bindings (c) to save computations
before the program execution.

Terms can be integer literals, variables, basic arithmetic, and array
and tuple accessors. They also feature the specific primitive old thatSimilarly to OCaml,

this language does
not allow any direct

manipulation of
memory addresses in

its terms.

refers to the pre-state value of a term. Terms only feature read-only



4.2 program specifications 55

constructs, andmodifying program states from the specifications is not
allowed.

𝑡 ∶∶= 𝑛 integer literal
| 𝑥 variable
| 𝑡 + 𝑡 | 𝑡 - 𝑡 basic arithmetic
| 𝑡[𝑡] array getter
| length 𝑡 array length
| 𝑡.𝑛 tuple getter
| old 𝑡 prestate reference

4.2.3 Predicates

The purpose of predicates is to express properties about the program
states. They are the predicate of the first-order logic with bounded
quantifications over integers. They provide Boolean constants, logic
negation, logic conjunction and disjunction, bounded existential and
universal quantifiers over integers, as well as an equality predicate over
terms.

We use the equality
symbol === in
specifications to
differentiate from the
mathematical
equality = we use in
formulas. The
meaning of === is
described in
section 4.3.3.

𝑃 ∶∶= true | false constants
| not 𝑝 negation
| 𝑡 === 𝑡 equality
| 𝑃 //\ 𝑃 conjunction
| 𝑃 \\/ 𝑃 disjunction
| forall 𝑥, 𝑡 <<= 𝑥 < 𝑡 -> 𝑃 universal
| exists 𝑥, 𝑡 <<= 𝑥 < 𝑡 //\ 𝑃 existential

4.2.4 Well-formed Specifications

For specifications to be well formed, their components must comply
with basic typing rules.

well-typed terms. Terms—whether they appear in copies or in
predicates—should be well typed. We introduce a typing judgment
Γ ⊢ 𝑡 ∶ 𝜏 meaning that 𝑡 has type 𝜏 in the typing environment Γ, which
associates variables to types. The inference rules for this judgment are
standard and should follow intuition; they are available in figure 4.1.

These rules make the typing relation a deterministic relation over
terms: there is at most one type associated to a term in a given typing
environment.

Lemma 1 (Terms typing is deterministic). Let Γ be a typing environment,
𝑡 a term, and 𝜏 and 𝜏′ two types.
If Γ ⊢ 𝑡 ∶ 𝜏 and Γ ⊢ 𝑡 ∶ 𝜏′, then 𝜏 = 𝜏′.
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Γ ⊢ 𝑛 ∶ int
(Ty-Int)

Γ(𝑥) = 𝜏
Γ ⊢ 𝑥 ∶ 𝜏

(Ty-Var)

Γ ⊢ 𝑡 ∶ 𝜏1 × 𝜏2 × … × 𝜏𝑛 0 ≤ 𝑖 < 𝑛
Γ ⊢ 𝑡.𝑖 ∶ 𝜏𝑖

(Ty-Pi)

Γ ⊢ 𝑡1 ∶ 𝜏 array Γ ⊢ 𝑡2 ∶ int
Γ ⊢ 𝑡1[𝑡2] ∶ 𝜏

(Ty-Get)

Γ ⊢ 𝑡 ∶ 𝜏 array

Γ ⊢ length 𝑡 ∶ int
(Ty-Length)

Γ ⊢ 𝑡 ∶ 𝜏
Γ ⊢ old 𝑡 ∶ 𝜏

(Ty-Old)

Figure 4.1: Typing rules for terms.

Proof. By induction over 𝑡.

well-typed predicates. Predicates also have to be well typed, and
similar rules apply to them, which essentially express that all their
sub-terms are also well typed. We note Γ ⊢ 𝑃 to denote that 𝑃 is well
typed in the environment Γ. The rules for deciding Γ ⊢ 𝑃 are shown in
figure 4.2.

well-formed specifications. We say that a specification is well
formed when (a) the variables in the domain declaration are all dis-
tinct; (b) the modifies identifiers are a subset of the domain identifiers;
(c) there are as many identifiers as terms in the copy declaration; (d) all
the copy terms arewell typed in the environment formed by the domain;
(e) the ensures predicate is well typed in the environment formed by
the domain and the variables introduced by the copy declaration.

Definition 4 (Well-formed specifications). A specification

domain 𝑥0: 𝜏0, …, 𝑥𝑑−1: 𝜏𝑑−1;

modifies 𝑦0, …, 𝑦𝑚−1;

let 𝑧0, …, 𝑧𝑐−1 = copy (𝑡0, …, 𝑡𝑐′−1) in

ensures 𝑃

is well formed when:

(a) for all distinct integers 𝑖 and 𝑗, we have 𝑥𝑖 ≠ 𝑥𝑗;

(b) for all integer 𝑖, there exists an integer 𝑗 such that 𝑦𝑖 = 𝑥𝑗;

(c) we have 𝑐 = 𝑐′;

(d) for all integer 𝑖, there exists a type 𝜏𝑡𝑖
such that

(𝑥0 ∶ 𝜏0), … , (𝑥𝑑−1 ∶ 𝜏𝑑−1) ⊢ 𝑡𝑖 ∶ 𝜏𝑡𝑖
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Γ ⊢ true
(Ty-True)

Γ ⊢ false
(Ty-False)

Γ ⊢ 𝑃
Γ ⊢ not 𝑃

(Ty-Not)
Γ ⊢ 𝑃1 Γ ⊢ 𝑃2

Γ ⊢ 𝑃1 //\ 𝑃2
(Ty-And)

Γ ⊢ 𝑃1 Γ ⊢ 𝑃2

Γ ⊢ 𝑃1 \\/ 𝑃2
(Ty-Or)

Γ ⊢ 𝑡1 ∶ 𝜏 Γ ⊢ 𝑡2 ∶ 𝜏
Γ ⊢ 𝑡1 === 𝑡2

(Ty-Equal)

Γ ⊢ 𝑡1 ∶ int Γ ⊢ 𝑡2 ∶ int
Γ, 𝑖 ↦ int ⊢ 𝑃

Γ ⊢ forall 𝑖, 𝑡1 <<= 𝑖 < 𝑡2 -> 𝑃
(Ty-Forall)

Γ ⊢ 𝑡1 ∶ int Γ ⊢ 𝑡2 ∶ int
Γ, 𝑖 ↦ int ⊢ 𝑃

Γ ⊢ exists 𝑖, 𝑡1 <<= 𝑖 < 𝑡2 //\ 𝑃
(Ty-Exists)

Figure 4.2: Typing rules for predicates.

(e) we have

(𝑥0 ∶ 𝜏0), … , (𝑥𝑑−1 ∶ 𝜏𝑑−1), (𝑧0 ∶ 𝜏𝑡0
), … , (𝑧𝑐−1 ∶ 𝜏𝑡𝑐−1

) ⊢ 𝑃

When a specification 𝑠𝑝 is well formed, we note 𝑤𝑓 (𝑠𝑝).

4 .3 program correctness

In this section, we consider well-formed states, programs, and spe-
cifications, and seek to define program correctness with respect to a
specification, i. e. what it means for a program to ‘meet its specification’.
We first need to introduce the values handled by the specification and
define the semantics for terms and predicates, then we can wrap it up
together to provide a meaning for the specifications.

4.3.1 Logic Values

Our semantics for specifications separates the program space—which
the program itself manipulates—and the logic space—which the spe-
cification considers. Terms and predicates manipulate logic values 𝑙𝑣,
which are agnostic of the memory. They represent self-contained val-
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ues rather than program values made of unresolved addresses. Logic
values can be integers, or arrays or tuples of logic values.At this stage, we

cannot differentiate
arrays from tuples;

typing provides this
information.

𝑙𝑣 ∶∶= 𝑛 integer
| [𝑙𝑣, … , 𝑙𝑣] array or tuple

from program values to logic values. The specification (hence
logic values) can manipulate the result of program computations via
variables (hence program values). Therefore, we need to establish the
rules for resolving program values into logic values. We note 𝑀, 𝑣 ↬ 𝑙𝑣
when the program value 𝑣 resolves to the logic value 𝑙𝑣 in thememory 𝑀.
Unsurprisingly, this resolution is defined by recursively browsing the
value and querying the memory whenever an address is encountered:

𝑀, 𝑛 ↬ 𝑛
(R-Int)

𝑀(𝑎) = [𝑣0, … , 𝑣𝑛−1] ∀𝑖 ∈ ℕ𝑛.𝑀, 𝑣𝑖 ↬ 𝑙𝑣𝑖

𝑀, 𝑎 ↬ [𝑙𝑣0, … , 𝑙𝑣𝑛−1]
(R-Addr)

This relation is deterministic, meaning that a program value resolves
to at most one logic value in a given memory.

Lemma 2 (↬ is deterministic). Let 𝑀 be a memory, 𝑣 a program value,
and 𝑙𝑣 and 𝑙𝑣′ two logic values.
If 𝑀, 𝑣 ↬ 𝑙𝑣 and 𝑀, 𝑣 ↬ 𝑙𝑣′, then 𝑙𝑣 = 𝑙𝑣′.

Lemma lv_of_v_deterministic :

forall M v lv lv',

lv_of_v M v lv -> lv_of_v M v lv' -> lv = lv'.

Proof. By induction over the proof of 𝑀, 𝑣 ↬ 𝑙𝑣.

It is also worth mentioning that in well-formed states, program vari-
ables always resolve to a logic value.

Lemma 3 (Value Resolution in Well-formed States). Let 𝑆 be a state, and
𝑥 a variable.
If 𝑤𝑓 (𝑆) and 𝑉(𝑥) = 𝑣, then there exists a logic value 𝑙𝑣 such that 𝑀, 𝑣 ↬ 𝑙𝑣.

Proof. By induction over 𝑣.

4 .3.2 Terms Semantics

Terms only exist in the specification world, so evaluating them leads to
logic values. Because terms contain the old primitive, evaluating them
not only requires a program state, but two program states: one for the
pre-state when a sub-term is under old, and one for the post-state in
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other cases. We note J𝑡K𝑆′

𝑆 the logical value produced by evaluating of
the term 𝑡 in the pre-state 𝑆 and post-state 𝑆′.

While terms are generally evaluated in the post-state, the old op-
erator lets you refer to the pre-state. The semantics is expressed by
evaluating the term in the pre-state 𝑆 only, rather than in the couple
𝑆, 𝑆′. This rule

conveniently makes
the old primitive
idempotent.

Jold 𝑡K𝑆′

𝑆 = J𝑡K𝑆
𝑆

Evaluating variables—which typically exist in the program space—
requires to query the variable bindings to get the corresponding ad-
dress, then apply the value resolution to compute the logic value.

𝑉′(𝑥) = 𝑣 𝑀′, 𝑣 ↬ 𝑙𝑣
J𝑥K𝑆′

𝑆 = 𝑙𝑣
(T-Var)

The other rules for the judgment J𝑡K𝑆′

𝑆 = 𝑙𝑣 are simple and follow the
intuition.

J𝑛K𝑆′

𝑆 = 𝑛
(T-Int)

J𝑡1K𝑆′

𝑆 = 𝑛1 J𝑡2K𝑆′

𝑆 = 𝑛2 𝑛 = 𝑛1 + 𝑛2

J𝑡1 + 𝑡2K𝑆′

𝑆 = 𝑛
(T-Plus)

J𝑡1K𝑆′

𝑆 = 𝑛1 J𝑡2K𝑆′

𝑆 = 𝑛2 𝑛 = 𝑛1 − 𝑛2

J𝑡1 - 𝑡2K𝑆′

𝑆 = 𝑛
(T-Minus)

J𝑡1K𝑆′

𝑆 = [𝑙𝑣0, … , 𝑙𝑣𝑛−1] J𝑡2K𝑆′

𝑆 = 𝑛0 0 ≤ 𝑛0 < 𝑛
J𝑡1[𝑡2]K𝑆′

𝑆 = 𝑙𝑣𝑛0

(T-Get)

J𝑡K𝑆′

𝑆 = [𝑙𝑣0, … , 𝑙𝑣𝑛−1]
Jlength 𝑡K𝑆′

𝑆 = 𝑛
(T-Length)

J𝑡K𝑆′

𝑆 = [𝑙𝑣0, … , 𝑙𝑣𝑛−1] 0 ≤ 𝑖 < 𝑛
J𝑡.𝑖K𝑆′

𝑆 = 𝑙𝑣𝑖
(T-Pi)

The evaluation of terms is also deterministic: if a term evaluates to This justifies the
notation J𝑡K𝑆′

𝑆 = 𝑙𝑣.two logic values in the same couple of states, then these values are in
fact equal.

Lemma 4 (J𝑡K𝑆′

𝑆 is deterministic). Let 𝑆 and 𝑆 be two states, 𝑡 a term, and
𝑙𝑣 and 𝑙𝑣′ two logic values.
If J𝑡K𝑆′

𝑆 = 𝑙𝑣 and J𝑡K𝑆′

𝑆 = 𝑙𝑣′, then 𝑙𝑣 = 𝑙𝑣′

Proof. By induction over the proof of J𝑡K𝑆′

𝑆 = 𝑙𝑣.
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4.3.3 Predicate Semantics

The semantics of predicates naturally derives from the semantics of the
terms. We note 𝑆, 𝑆′ ⊨ 𝑃 when 𝑃 holds in pre-state 𝑆 and post-state
𝑆′. Unsurprisingly, most of the definition follow the rules of first-order
logic.

𝑆, 𝑆′ ⊨ true ∶∶= ⊤
𝑆, 𝑆′ ⊨ false ∶∶= ⊥
𝑆, 𝑆′ ⊨ 𝑃1 //\ 𝑃2 ∶∶= 𝑆, 𝑆′ ⊨ 𝑃1 ∧ 𝑆, 𝑆′ ⊨ 𝑃2

𝑆, 𝑆′ ⊨ 𝑃1 \\/ 𝑃2 ∶∶= 𝑆, 𝑆′ ⊨ 𝑃1 ∨ 𝑆, 𝑆′ ⊨ 𝑃2

𝑆, 𝑆′ ⊨ not 𝑃 ∶∶= ¬(𝑆, 𝑆′ ⊨ 𝑃)
Let us pause on the definition of the equality predicate. In fact, the

logic domain of predicates and terms is not aware of addresses at all; we
reason directly on the contents of the memory instead of their location.
Comparing arrays 𝑎 and 𝑏 with the predicate 𝑎 === 𝑏 should compare
the contents of the arrays (recursively if necessary), rather than their
addresses in memory. Hence, we compare logical values rather than
program values.

𝑆, 𝑆′ ⊨ 𝑡1 === 𝑡2 ∶∶= J𝑡1K𝑆′

𝑆 = J𝑡2K𝑆′

𝑆

Finally, the quantifiers require to lexically substitute the quantified
variable in the predicate before evaluating it. The standard capture-
avoiding substitution of 𝑥 by 𝑡 in 𝑃 is noted 𝑃[𝑥 ← 𝑡]. The semantics of
the forall and exists constructs are is defined as follows.

𝑆, 𝑆′ ⊨ forall 𝑥, 𝑡1 <<= 𝑥 < 𝑡2 -> 𝑃 ∶∶=

∃𝑛1, 𝑛2. J𝑡1K𝑆′

𝑆 = 𝑛1 ∧
J𝑡2K𝑆′

𝑆 = 𝑛2 ∧
∀𝑗.𝑛1 ≤ 𝑗 < 𝑛2 ⟹ 𝑆, 𝑆′ ⊨ 𝑃[𝑥 ← 𝑗]

𝑆, 𝑆′ ⊨ exists 𝑥, 𝑡1 <<= 𝑥 < 𝑡2 //\ 𝑃 ∶∶=

∃𝑛1, 𝑛2. J𝑡1K𝑆′

𝑆 = 𝑛1 ∧
J𝑡2K𝑆′

𝑆 = 𝑛2 ∧
∃𝑗.𝑛1 ≤ 𝑗 < 𝑛2 ∧ 𝑆, 𝑆′ ⊨ 𝑃[𝑥 ← 𝑗]

Although it is not structural over 𝑃, this recursive definition is well-
founded, because the substitution of a variable by an integer does not
affect the size of the predicate.

Thanks to the bounds over the quantified variables, the statementThis property make it
possible for Ortac
to execute and verify
those predicates at

runtime. This will be
discussed in the

following chapters.

𝑆, 𝑆′ ⊨ 𝑃 is always decidable.

Lemma 5 (𝑆, 𝑆′ ⊨ 𝑃 is decidable). Let 𝑆 and 𝑆′ be two states, and 𝑃 a
predicate.

Then 𝑆, 𝑆′ ⊨ 𝑃 is decidable.
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Proof. By induction over P.

4.3.4 Program Correctness

Now that we defined the semantics of terms and can decide whether
a predicate holds, we can finally give a meaning to ‘the program 𝑝 is
correct with respect to the specification 𝑠𝑝’.

4 .3.4.1 Effects Correctness

The second condition for a program to meet its specification concerns
its modifies variables: if the program can modify the contents of a
variable at any depth (e. g. if the corresponding logic value changes),
then that variable must appear in the modifies list. Variables outside
the modifies variables are left unchanged by any execution of the pro-
gram.

Definition 5 (Effects correctness). Let 𝑝 be a program and 𝑠𝑝 a specific-
ation. The program 𝑝’s effects are correct with respect to 𝑠𝑝 when:

• for all states 𝑆, 𝑆′ such that 𝑆 𝑝 𝑆′,

• for all variables 𝑥 ∉ {𝑦0, … , 𝑦𝑚},

we have
𝑆(𝑥) = 𝑙𝑣 ⟺ 𝑆′(𝑥) = 𝑙𝑣

Note that this definition is about logic values, so they apply to variable
contents in their full depth. Hence, when two variables share some
memory space that the program may modify, they should both appear
in the modifies list.

4.3.4.2 Post-condition Correctness

Finally, the third condition concerns the ensures post-condition, with
its associated copy. The program is correct with respect to this part of
the specification when the predicate holds for every execution, when
the pre-state and post-state have been extended with the copied terms.

Definition 6 (Post-condition correctness). Let 𝑝 be a program and 𝑠𝑝 a
specification, with the following post-condition:

let 𝑦0, …, 𝑦𝑐−1 = copy (𝑡0, …, 𝑡𝑐−1) in ensures 𝑃

We say that 𝑝 is correct with respect to 𝑠𝑝’s post-condition when,

• for all states 𝑆 and 𝑆′ such that 𝑆 𝑝 𝑆′,

• for all state 𝑆𝑐 such that 𝑆 ⊑ 𝑆𝑐 and ∀𝑦𝑖. J𝑦𝑖K𝑆𝑐
𝑆𝑐 = J𝑡𝑖K𝑆

𝑆,

• for all state 𝑆𝑐′ such that 𝑆′ ⊑ 𝑆𝑐′ and ∀𝑦𝑖. J𝑦𝑖K𝑆𝑐′

𝑆𝑐′ = J𝑡𝑖K𝑆
𝑆,
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we have 𝑆𝑐, 𝑆𝑐′ ⊨ 𝑃.

The state 𝑆𝑐 (resp. 𝑆𝑐′) is a superset of 𝑆 (resp. 𝑆′), augmented with
the variables 𝑦𝑖 bound to values that resolve to the same logic values
as the terms 𝑡𝑖 in the pre-state.

Note that these extended states always exist, as long as there are
enough free addresses available in 𝑆′ for new bindings. We discuss
the perspective of dealing with a ‘full memory’ (and Out_of_memory

exceptions) in more details in chapter 6.
Remark 9 (About copy redundancy). The construction introducing the
new identifiers 𝑦𝑖 bound to the pre-state computations of the terms 𝑡𝑖
is in fact redundant as the same result can be achieved by at least two
other means.

First, it is equivalent to using old(𝑡𝑖) in the predicates directly (see
the rule T-Old). However, both differ by their nature, as old is gener-
ally a logic primitive, not accessible in most programming languages,
whereas copy is a feature of imperative programming language, not
available to specifications as they are generally pure.

Likewise, this state extension could be part of the program execution
in the first place, and the variables 𝑦𝑖 added to the program domain,
rather than considered only when verifying the predicate.

Microspel aims at transitioning from the specifications to the (veri-
fying) programs, which explains some of its redundancy. In the next
chapters, we will consider specifications without copy, and will trans-
form them to specifications without old, then will translate the result
into a program.

conclusion

This chapter introduced a formalization of imperative programs and
their Microspel specifications. We described what it means for a
program to be correct with respect to a specification.

The following chapter uses the definitions introduced previously to
describe specification transformations that allow Ortac to efficiently
decide the predicate’s validity with only the computing capabilities
available to the OCaml programmer (e. g. no access to previous states,
no access to the addresses, no old primitive).

The attentive reader may have noticed that Microspel uses a copy
keyword, but no copying is involved at any point in the definitions
presented in this chapter. In a real-world context where imperative
program alter the state during the execution, accessing ‘the value of a
term in the pre-state’ is only possible in the pre-state, which has been
destroyed. Therefore, copying some memory chunks corresponding
to these terms may be the only way to actually implement this state
extension, which is mandatory for checking that the predicate holds.







5
EFF IC IENT PRESTATE CAPTURES IN FUNCT ION
POSTCONDIT IONS

In this chapter, we use Microspel as a model to show how Ortac
instruments OCaml codewhen its Gospel specification contains post-
conditions that involve the old operator. Indeed, as we explained in
chapter 2 (for Gospel) and formalized in chapter 4 (for Microspel),
the terms appearing under old primitives are meant to be evaluated in
the prestate of the function before its execution, and the result of this
evaluation is used to evaluate a postcondition predicate in a poststate.

In the presence of effects and a transient memory, the program may
mutate the memory portions referred to via old. Since this memory
is no longer accessible after the execution of the program, copying is
necessary.

executability criteria. Since OCaml does not provide such a
primitive, we must perform an old elimination in the specifications be-
fore executing them. In otherwords, wemust ensure that (a) the copied
terms 𝑡𝑖 contain no old primitives; (b) the postcondition predicate 𝑃
contains no old primitives.

Definition 7 (Specification executability criteria). A well-formed spe-
cification 𝑠𝑝 is executable when it contains no old primitive.

5.1 motivating example

Let us consider the following running example for this chapter. This specification
initially has no
copies, so we omit
them in the
presentation. Also
note that the
specification does not
say anything about
the rest of the array
a.

domain a: (int array) array;

modifies a;

ensures length a[0] === 2 * length (old (a[0])) //\

forall i, 0 <<= i < length (old (a[0])) ->

a[0][i] === old (a[0][i])

Notation 3. Wewill use the following notations to shorten the two parts
of the predicate:

𝑃1 ∶= length a[0] === 2 * length (old (a[0]))

𝑃2 ∶= forall i, 0 <<= i < length (old (a[0])) ->

a[0][i] === old (a[0][i])

65
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It specifies a program that takes an array of integer arrays a as input,
and modifies it in place. It doubles the size of the array in the first cell
(𝑃1), but maintains the existing elements at the head of the array (𝑃2).

For instance, the following execution is correct with respect to this
specification: it modifies nothing other than the array a; the size of
a[0] is doubled from 3 to 6, and the first three elements (1, 1, and 2)
are still the first three elements after the execution.

a

1 1 2

old (a[0][i])

 

a

1 1 2 3 5 8

a[0][i]

copying is necessary. When executing this specification, the post-
condition should be evaluated in the poststate (i. e. in the right-hand
side state above). However, some of the data necessary for the compu-
tation (e. g. old a[0][i] or length (old (a[0]))) points to memory
portions in the prestate (left-hand side). Therefore, copying a prestate
version of a[0] is necessary before the execution of the program.

replacing old with copies is too naive. Afirst intuitionwould
consist in copying the data necessary to evaluate the terms under old,
saving their contents into fresh variables, and replacing the terms with
these variables, as noted in the previous chapter. However, this can
lead to ill-formed specifications. For instance, in the case of 𝑃2, copying
a[0][i] in the prestate does notmake sense since i does not exist in the
prestate; the resulting specification would not pass the typing phase.

5.2 executing prestate captures

This section presents the transformations we apply to specifications in
order to make them executable and acceptable by Ortac (with respect
to definition 7).

5.2.1 Removing Redundant old Primitives

This section describes a first sanitation transformation that removes old
primitives that do not impact the specification semantics. Specifically,
wewant to remove (a) all old primitives in the copied terms; (b) nested
old primitives in the postcondition.
Remark 10. One could assume or enforce these properties during the
typing phase, but being overly restrictive gets in the way of writing
intelligible specifications.
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Indeed, in the context of Gospel, the library developermaywillingly
add redundant old in the postcondition to emphasize a particular as-
pect of the specification. The primitives may also appear after applying
and inlining logic predicates that use them in their definition. Finally,
forbidding redundant old could get in the way of automatically adding
these primitives in Gospel or Ortac, e. g. around values that are not
mutable or while generating specifications.

The first part of the transformation lets us remove all old primitives
from a term and its sub-terms, i. e. it replaces the sub-terms of the form
old 𝑡 with 𝑡.

Definition 8 (𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑). We define the transformation 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑 as
follows when applied to old terms:

old 𝑡 ↦ 𝑡

In other cases, 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑 is a simple recursive traversal of the terms.

𝑥 ↦ 𝑥
𝑛 ↦ 𝑛

𝑡1 + 𝑡2 ↦ 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(𝑡1) + 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(𝑡2)
𝑡1 - 𝑡2 ↦ 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(𝑡1) - 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(𝑡2)
𝑡1[𝑡2] ↦ (𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(𝑡1))[𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(𝑡2)]

length 𝑡 ↦ length (𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(𝑡))
𝑡.𝑛 ↦ (𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(𝑡)).𝑛

The definition is well-founded since recursive calls apply to structurally
decreasing terms.

Example 7.

𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(2 * length (old (a[0]))) =
2 * length a[0]

The second part, 𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑, lets us remove nested old prim-
itives in a term. Just like 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑, it recursively traverses the terms
except for terms of the form old 𝑡, where it removes all old primitives
in 𝑡.

Definition 9 (𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑 (terms)). We define the term trans-
formation 𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑 as follows for old terms:

old 𝑡 ↦ old (𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(𝑡))
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In other cases, 𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑 is also a recursive traversal of the
terms.

𝑥 ↦ 𝑥
𝑛 ↦ 𝑛

𝑡1 + 𝑡2 ↦ 𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑(𝑡1) + 𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑(𝑡2)
𝑡1 - 𝑡2 ↦ 𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑(𝑡1) - 𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑(𝑡2)
𝑡1[𝑡2] ↦ (𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑(𝑡1))[𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑(𝑡2)]

length 𝑡 ↦ length (𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑(𝑡))
𝑡.𝑛 ↦ (𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑(𝑡)).𝑛

This definition is also well-founded for the same reason as 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑:
it recursively applies to structurally decreasing terms.

Example 8.

𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑 (old (2 * length (old (a[0])))) =
old (2 * length a[0])

We also generalize the transformation 𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑 for predic-
ates with a simple morphism that applies the previously defined trans-
formation down to the terms.

Example 9.

𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑
(forall i, 0 <<= i < n -> a[i] === old ((old a)[i])) =

forall i, 0 <<= i < n -> a[i] === old (a[i])

Finally, the 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒 transformation applies to specification in order
to remove duplicate old operators.

Definition 10 (𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒). If 𝑠𝑝 is the following specification:

domain 𝑥0: 𝜏0, …, 𝑥𝑑−1: 𝜏𝑑−1;

modifies 𝑦0, …, 𝑦𝑚−1;

let 𝑧0, …, 𝑧𝑐−1 = copy (𝑡0, …, 𝑡𝑐−1) in

ensures 𝑃,

then 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒(𝑠𝑝) is the following specification:

domain 𝑥0: 𝜏0, …, 𝑥𝑑−1: 𝜏𝑑−1;

modifies 𝑦0, …, 𝑦𝑚−1;

let 𝑧0, …, 𝑧𝑐−1 =

copy (𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(𝑡0), …, 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(𝑡𝑐−1))
in

ensures 𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑(𝑃).
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Example 10. The following specification

domain a: (int array) array;

modifies a;

let x = copy ((old a)[0]) in

ensures length a[0] === 2 * old (length x) //\

forall i, 0 <<= i < length x ->

a[0][i] === old ((old a)[0][i])

is sanitized into

domain a: (int array) array;

modifies a;

let x = copy (a[0]) in

ensures length a[0] === 2 * old (length x) //\

forall i, 0 <<= i < length x ->

a[0][i] === old a[0][i]

Remark 11. In the context of OCaml, notice how one could
also simplify old (length x) into length x since x is already
a prestate variable, and arrays lengths in OCaml cannot be mod-
ified. This task is not the role of 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒; we will discuss it in the
next section.

correctness. This transformation is correct, meaning that (a) it
does not change the good formation of the specification; (b) it does not
change the semantics of the specification; (c) the copied terms in the
result do not contain any old and the postcondition of the result does
not contain any nested old.

Theorem 6 (𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒 preserves the good formation of the specification).
If 𝑠𝑝 is a specification, we have

𝑤𝑓 (𝑠𝑝) ⟺ 𝑤𝑓 (𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒(𝑠𝑝)).

Theorem sanitize_wf:

forall sp, wf_spec sp <-> wf_spec (sanitize sp).

Proof. By induction over terms and predicates. The old primitive does
not affect typing (see Ty-Old rule).

Theorem7 (𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒maintains programcorrectness). If 𝑝 is a well-formed
program and 𝑠𝑝 is a well-formed specification, we have

𝑝 ⊨ 𝑠𝑝 ⟺ 𝑝 ⊨ 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒(𝑠𝑝).

Theorem sanitize_correct:

forall p sp,

wf_spec sp ->

wf_prog p ->

correct p sp <-> correct p (sanitize sp).
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Proof. By induction over terms and predicates. Concerning nested old,
as noted in section 4.3.2, the primitive is idempotent, so the inner old
in nested configurations have no effect on the specification semantics.
As for the copied terms, they are always evaluated in the prestate (see
section 4.3.4.2), so old primitives are also safely removable in this con-
text.

Remark 12. In this theorem, and the upcoming similar ones in this
chapter, the direct implication ( ⟹ ) ensures that the transformed
specification is not more restrictive than the original one, which would
cause Ortac to trigger false positives. Conversely the indirect implic-
ation ( ⟸ ) ensures that the transformation did not loosen the con-
straints of the specification, which would trigger false negatives.

Theorem 8 (𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒 postcondition). If 𝑠𝑝 is a specification, then

(a) no copied term in 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒(𝑠𝑝) contain a old;

(b) the postcondition in 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒(𝑠𝑝) contains no nested old.

Theorem sanitize_post:

forall sp,

no_old (post (sanitize sp)) //\

Forall no_nested_old (copies (sanitize sp)).

Proof. By induction over terms and predicates.

5.2.2 Moving old Down to Variables

In order to address the issue of locally bound variables we raised in our
example, we propose a second term transformation with two effects:
(a) it ‘moves’ the old primitives down to the variables; (b) it removes
some of these old.

Indeed, when old is applied to a variable introduced by a forall

or exists binder, we claim that removing old does not change the
semantics of the term. Similarly, we remove old primitives around
variables introduced by copy, with no prejudice to the semantics of the
specification. Finally, we also remove old around variables that are not
declared in the modifies variables.As in Ortac, the

modifies part is
considered an

hypothesis that we
can use to optimize

the specification.

The outcome of this transformation is a specification where only the
potentially modified variables available in the prestate appear under
old primitives.

The first part of this transformation is a function 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠 that takes
two arguments: a term and the set of locally bound variables ℬ, i. e.
variables introduced by a copy or a quantifier. It returns a new term
where it added old around all variables, except for those in ℬ.
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Definition 11 (𝑜𝑙𝑑_𝑣𝑎𝑟𝑠). We define the transformation 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠 as fol-
lows when applied to variables.

𝑥, ℬ ↦
⎧{
⎨{⎩

𝑥 if 𝑥 ∈ ℬ
old 𝑥 otherwise

In other cases, 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠 recursively traverses the termwhilemaintaining
the set ℬ unchanged (these terms introduce no new variable). The definition

provided for
𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(old 𝑡, ℬ)
does not matter as
long as 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛
remains
well-founded since
the global
transformation
defined later in
definition 14 will
never reach that case.

𝑛, ℬ ↦ 𝑛
𝑡1 + 𝑡2, ℬ ↦ 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(𝑡1, ℬ) + 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(𝑡2, ℬ)
𝑡1 - 𝑡2, ℬ ↦ 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(𝑡1, ℬ) - 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(𝑡2, ℬ)
𝑡1[𝑡2], ℬ ↦ (𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(𝑡1, ℬ))[𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(𝑡2, ℬ)]

length 𝑡, ℬ ↦ length (𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(𝑡, ℬ))
𝑡1.𝑛, ℬ ↦ (𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(𝑡1, ℬ)).𝑛

old 𝑡, ℬ ↦ 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(𝑡, ℬ)

Example 11.

𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(length a[0], ∅) = length ((old a)[0])

We may now use this transformation to introduce 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛, which
‘moves’ the old primitives down to the variables and removes the un-
necessary ones using 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠. It takes the same arguments as 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠
and returns a term.

Definition 12 (𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 (terms)). We define the function 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 as
follows for the cases of variables and old. Unlike in 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠,

variables are left
untouched, because
they are not located
under old at this
stage.

𝑥, ℬ ↦ 𝑥
old 𝑡, ℬ ↦ 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(𝑡, ℬ)

Again, 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 recursively traverses the term with the same set ℬ in
other cases.

𝑛, ℬ ↦ 𝑛
𝑡1 + 𝑡2, ℬ ↦ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡1, ℬ) + 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡2, ℬ)
𝑡1 - 𝑡2, ℬ ↦ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡1, ℬ) - 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡2, ℬ)
𝑡1[𝑡2], ℬ ↦ (𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡1, ℬ))[𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡2, ℬ)]

length 𝑡, ℬ ↦ length (𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡, ℬ))
𝑡1.𝑛, ℬ ↦ (𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡1, ℬ)).𝑛
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Example 12.

𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(2 * old (length a[0]), ∅) =
2 * length ((old a)[0])

𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(2 * old (length a[0]), {𝑎}) =
2 * length a[0]

We also extend 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 for predicates and take special care to ex-
pand ℬ with newly bound variables when traversing quantifiers.

Definition 13 (𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 (predicates)). The transformation 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛
is a predicate transformation defined as follows for quantifiers that
introduce variables:

forall 𝑥, 𝑡1 <<= 𝑥 < 𝑡2 -> 𝑃, ℬ ↦
forall 𝑥, 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡1, ℬ) <<= 𝑥 < 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡2, ℬ)

-> 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑃, ℬ ∪ {𝑥})

exists 𝑥, 𝑡1 <<= 𝑥 < 𝑡2 //\ 𝑃, ℬ ↦
exists 𝑥, 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡1, ℬ) <<= 𝑥 < 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡2, ℬ)

//\ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑃, ℬ ∪ {𝑥})

In other cases, 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 is a simple morphism.

true, ℬ ↦ true

false, ℬ ↦ false

not 𝑃, ℬ ↦ not 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑃, ℬ)
𝑡1 === 𝑡2, ℬ ↦ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡1, ℬ === 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡2, ℬ)

𝑃1 //\ 𝑃2, ℬ ↦ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑃1, ℬ) //\ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑃2, ℬ)
𝑃1 \\/ 𝑃2, ℬ ↦ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑃1, ℬ) \\/ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑃2, ℬ)

Example 13.

𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑃1) = length a[0] ===

2 * length ((old a)[0])

𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑃2) = forall i,

0 <<= i < length ((old a)[0]) ->

a[0][i] === (old a)[0][i]

Finally, we define 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 for specifications. It is a transformation
that takes a specification as an argument and returns a specification. It
applies 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 (for predicates) to the postcondition predicate. The
initial set ℬ is the set of variables introduced by copy or declared in
modifies.
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Definition 14 (𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 (specification)). If 𝑠𝑝 is the following specific-
ation:

domain 𝑥0: 𝜏0, …, 𝑥𝑑−1: 𝜏𝑑−1;

modifies 𝑦0, …, 𝑦𝑚−1;

let 𝑧0, …, 𝑧𝑐−1 = copy (𝑡0, …, 𝑡𝑐−1) in

ensures 𝑃,

then 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑠𝑝) is the following specification:

domain 𝑥0: 𝜏0, …, 𝑥𝑑−1: 𝜏𝑑−1;

modifies 𝑦0, …, 𝑦𝑚−1;

let 𝑧0, …, 𝑧𝑐−1 = copy (𝑡0, …, 𝑡𝑐−1) in

ensures 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑃, {𝑦0, … , 𝑦𝑚−1, 𝑧0, … , 𝑧𝑐−1}).

Example 14. After applying this transformation, our initial spe-
cifications becomes

domain a: (int array) array;

modifies a;

ensures length a[0] === 2 * length ((old a)[0]) //\

forall i, 0 <<= i < length ((old a)[0]) ->

a[0][i] === (old a)[0][i].

correctness. This transformation is correct, meaning that (a) it
does not change the good formation of the specification; (b) it does not
change the semantics of the specification; (c) in the resulting specifica-
tion, if a sub-term is of the form old 𝑡, then 𝑡 is a variable that belongs
to the domain of the specification.

Theorem 9 (𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 preserves the good formation of the specifica-
tion). If 𝑠𝑝 is a specification, we have

𝑤𝑓 (𝑠𝑝) ⟺ 𝑤𝑓 (𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑠𝑝)).

Lemma wf_old_down:

forall sp, wf_spec sp <-> wf_spec (old_down sp).

Proof. Similar to theorem 6: old does not affect the typing of terms.

Theorem 10 (𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 maintains program correctness). If 𝑝 is a well-
formed program and 𝑠𝑝 is a well-formed specification, we have

𝑝 ⊨ 𝑠𝑝 ⟺ 𝑝 ⊨ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑠𝑝).

Lemma old_down_correct:

forall p sp,

wf_spec sp ->

wf_prog p ->

correct p sp <-> correct p (old_down sp).
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Proof. By induction over the terms and predicates. Moving old down
to the variables does not affect the semantics (see rules T_Old and
T_Var. Moreover, the old we chose to remove are either locally intro-
duced, or not modified by the program; in both cases, the old primitive
is redundant.

Theorem 11 (𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 postcondition). If 𝑠𝑝 is a well-formed specification,
and 𝑡 is a term appearing in 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑠𝑝), then 𝑡 is a variable declared in 𝑠𝑝’s
mutable variables.

Theorem old_down_post:

forall sp t,

wf_spec sp ->

subterm (TOld t) sp ->

exists x,

In x (modifies sp) //\ t = TVar x.

Proof. By induction over terms and predicates.

5.2.3 Introducing Copies

In this section, we show the last transformation required to make the
specifications executable. The function 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑 traverses the terms
and collects the old sub-terms to replace with fresh variables. It pro-
duces the transformed terms, and a vector 𝒱 of pairs (𝑧, 𝑡) of variables
and terms that represent the sub-term under old that it replaced and
the corresponding variables that replaced it.To make the

definition easier to
read, we present it

using an imperative
syntax, where

𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑 modifies
a global vector 𝒱. In

Coq, we implemented
a state monad to
achieve a similar

presentation.

Definition 15 (𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑). Wedefine the function 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑 as follows.
When it faces a term old 𝑡, 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑 creates a fresh variable 𝑥, adds
the pair (𝑥, 𝑡) to the vector 𝒱, and returns the variable 𝑥.

old 𝑡 ↦ 𝑥 ← 𝑓 𝑟𝑒𝑠ℎ_𝑣𝑎𝑟();
𝒱 ← (𝑥, 𝑡) ::: 𝒱;
𝑥
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For the other cases, 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑 recursively traverses the terms.

𝑥 ↦ 𝑥

𝑛 ↦ 𝑛

𝑡1 + 𝑡2 ↦ 𝑡′
1 ← 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑(𝑡1);

𝑡′
2 ← 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑(𝑡2);

𝑡′
1 + 𝑡′

2

𝑡1 - 𝑡2 ↦ 𝑡′
1 ← 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑(𝑡1);

𝑡′
2 ← 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑(𝑡2);

𝑡′
1 - 𝑡′

2

𝑡1[𝑡2] ↦ 𝑡′
1 ← 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑(𝑡1);

𝑡′
2 ← 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑(𝑡2);

𝑡′
1[𝑡′

2]

length 𝑡 ↦ 𝑡′ ← 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑(𝑡);
length 𝑡′

𝑡1.𝑛 ↦ 𝑡′ ← 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑(𝑡);
𝑡′.𝑛

We generalize this transformation for predicates, where it recursively
traverses the predicate and applies 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑 to every term. Finally, the
transformation 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠 applies 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑 to its postcondition,
then adds the pairs in 𝒱 to its copy bindings.

Definition 16 (𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠). If 𝑠𝑝 is the following specification:

domain 𝑥0: 𝜏0, …, 𝑥𝑑−1: 𝜏𝑑−1;

modifies 𝑦0, …, 𝑦𝑚−1;

let 𝑧0, …, 𝑧𝑐−1 = copy (𝑡0, …, 𝑡𝑐−1) in

ensures 𝑃,

we apply the function 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑 to its postcondition: Applying
𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑 here
creates the predicate
𝑃′, and also fills the
vector 𝒱.

𝑃′ ← 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑(𝑃),

then return the following specification:

domain 𝑥0: 𝜏0, …, 𝑥𝑑−1: 𝜏𝑑−1;

modifies 𝑦0, …, 𝑦𝑚−1;

let 𝑧0, …, 𝑧𝑐−1, 𝑧′
0, …, 𝑧′

𝑠 =

copy (𝑡0, …, 𝑡𝑐−1, 𝑧′
0, …, 𝑧′

𝑠)

in

ensures 𝑃′,

when 𝒱 = {(𝑧′
0, 𝑡′

0), … , (𝑧′
𝑠, 𝑡′

𝑠)}.

Example 15. Consider the following specification:
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domain a: (int array) array;

modifies a;

ensures length a[0] === 2 * length ((old a)[0]) //\

forall i, 0 <<= i < length (old (a[0])) ->

a[0][i] === (old a)[0][i].

The function 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠 will produce

domain a: (int array) array;

modifies a;

let z_0, z_1, z_2 = copy (a, a[0], a[0][i]) in

ensures length a[0] === 2 * length z_0[0] //\

forall i, 0 <<= i < length z_1 -> a[0][i] === z_2.

correctness. Before proving the correctness of this function, note
that the properties that hold for 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒 and 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 do not necessar-
ily hold for 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠. For instance, transforming a well-formed
specification can lead to an ill-formed specification as output.

Example 16 (𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠 can lead to ill-formed specification).
Our example specification is well formed, as we discussed earlier.
However, applying 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠 leads to the following spe-
cification:

domain a: (int array) array;

modifies a;

let z_0, z_1, z_2 = copy (a[0], a[0], a[0][i]) in

ensures length a[0] === 2 * length z_0 //\

forall i, 0 <<= i < length z_1 -> a[0][i] === z_2,

which is ill-formed, since one cannot type a[0][i] in the envir-
onment a ∶ (int array) array (because of the unbound vari-
able i).

In fact, 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠 is meant to be executed after 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛, and
we need this hypothesis to prove its correctness. This transformation
is correct, meaning that when fed a well-formed specification that also
obeys the properties described in theorem 11, (a) it maintains the good
formation of the specification; (b) it maintains the semantics of the
specification; (c) there are no more old primitives in the resulting spe-
cification’s postcondition.

Theorem 12 (𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠 preserves the good formation of the spe-
cifications). If 𝑠𝑝 is a specification, we have

𝑤𝑓 (𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑠𝑝)) ⟺ 𝑤𝑓 (𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠(𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑠𝑝))).

Theorem introduce_copies_wf:

forall sp,
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wf_spec (old_down sp) <->

wf_spec (introduce_copies (old_down sp)).

Proof. Replacing a term with a variable of the same type does not
change the good formation of the specification.

Theorem 13 (𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠 maintains program correctness). If 𝑝 is a
well-formed program and 𝑠𝑝 is a well-formed specification, we have

𝑝 ⊨ 𝑠𝑝 ⟺ 𝑝 ⊨ 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠(𝑠𝑝).

Theorem introduce_copies_correct:

forall p sp,

wf_spec sp ->

wf_prog p ->

correct p sp <-> correct p (introduce_copies sp).

Proof. By applying T-Old and the copy semantics described in defini-
tion 6.

Theorem 14 (𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠 postcondition). If 𝑠𝑝 is a well-formed spe-
cification, then for all sub-terms of the form old 𝑡 appearing in 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑠𝑝),
the term 𝑡 is a variable declared in 𝑠𝑝’s domain.

Theorem introduce_copies_post:

forall sp t,

wf_spec sp ->

subterm (TOld t) sp ->

exists x, In x (domain sp) //\ t = TVar x.

Proof. By applying T-Old and the copy semantics described in defini-
tion 6.

5.2.4 Wrapping Up: How We Make the Specification Executable

We may now compose the three transformations we presented to trans-
form arbitrary well-formed specifications into equivalent well-formed
specifications that satisfy the executability criteria (definition 7).

We note this final transformation 𝑇𝑏𝑎𝑠𝑒:

𝑇𝑏𝑎𝑠𝑒 = 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠 ∘ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 ∘ 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒

Remark 13. The order of 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒 does not matter for the computation
result or the proofs; the only constraint is that 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠 is fed
a specification where the property from theorem 11 holds. However,
applying 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒 first is convenient since it lets us ignore some cases
that are eliminated in our transformation (e. g. in 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛, as we noted
earlier).
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This specification
could be simplified
by only copying a
once rather than

three times. However,
this difference is of
little importance if

the concrete
implementation of

copy handles
memory sharing

properly, which we
will show in

chapter 6.

Example 17. Our initial example

domain a: (int array) array;

modifies a;

ensures length a[0] === 2 * length (old (a[0])) //\

forall i, 0 <<= i < length (old (a[0])) ->

a[0][i] === old (a[0][i])

finally becomes

domain a: (int array) array;

modifies a;

let a_0, a_1, a_2 = copy (a, a, a) in

ensures length a[0] === 2 * length a_0[0] //\

forall i, 0 <<= i < length a_1[0] ->

a[0][i] === a_2[0][i],

which is indeed well formed and does not contain any more old
operators, therefore is executable.

Theorem 15 (𝑇𝑏𝑎𝑠𝑒 preserves the good formation of the specifications).
If 𝑠𝑝 is a specifications, we have

𝑤𝑓 (𝑠𝑝) ⟺ 𝑤𝑓 (𝑇𝑏𝑎𝑠𝑒 (𝑠𝑝)) .

Theorem t_base_wf:

forall sp, wf_spec sp <-> wf_spec (t_base sp).

Proof. By applying theorems 6, 9 and 12.

Theorem 16 (𝑇𝑏𝑎𝑠𝑒 maintains program correctness). If 𝑝 is a well-formed
program and 𝑠𝑝 is a well-formed specification, we have

𝑝 ⊨ 𝑠𝑝 ⟺ 𝑝 ⊨ 𝑇𝑏𝑎𝑠𝑒 (𝑠𝑝) .

Theorem t_base_correct:

forall p sp,

wf_spec sp ->

wf_prog p ->

correct p sp <-> correct p (t_base sp).

Proof. By applying theorems 7, 10, 11 and 13.

Theorem 17 (𝑇𝑏𝑎𝑠𝑒 produces executable specifications). If 𝑠𝑝 is a spe-
cification, then 𝑇𝑏𝑎𝑠𝑒 (𝑠𝑝) does not contain any old.

Theorem t_base_executable:

forall sp, wf_spec sp -> executable (t_base sp).

Proof. By applying theorems 8, 11 and 14.
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5.3 reducing the copied space

We made sure that the transformation 𝑇𝑏𝑎𝑠𝑒 is correct, but we did not
pay attention to the performance of the execution of the resulting spe-
cification just yet. Although we have not yet discussed the execution
of the specifications itself, we can already sense with definition 6 that This is the object of

the chapter 6, where
we will also discuss
the actual
implementation and
cost of the copy.

executing a specification will induce a memory cost due to the copy

part. For instance, the result of 𝑇𝑏𝑎𝑠𝑒 on our specification presented in
section 5.2.4 induces a copy of the full array a, whereas only a[0] is
necessary to decide if the postcondition holds.

In this section, we present a last transformation that investigates how
we manipulate the old variables to helps us reduce the copied space
and improve the performance. Indeed, the instrumentation not only
results in high runtime verification overhead, but can also change the
complexity of the algorithm (see an example in section 5.5.3), threat-
ening its scalability.

5.3.1 The Cost of Copying

For now, let us approximate the cost of copy (𝑡1, …, 𝑡𝑐) as the size
(i. e. the number of memory cells) of the memory necessary to fully
evaluate the terms 𝑡1, … , 𝑡𝑐. This is the metric we will try to optimize.
Definition 17 (Footprint of a copy). Let us note 𝒜𝑀(𝑣) the set of ad-
dresses that one must read to resolve 𝑀, 𝑣 ↬ 𝑙𝑣 following section 4.3.1.
We have

𝒜𝑀(𝑛) = ∅;

𝒜𝑀(𝑎) = {𝑎} ∪ (
𝑛−1
⋃
𝑖=0

𝒜𝑀(𝑣𝑖)) ,

when 𝑀(𝑎) = [𝑣0, … , 𝑣𝑛−1].
We also use the notation 𝒜𝑆 for the function that gives the footprint

of a term in the state 𝑆. In the case of variables, we look for the footprint We can avoid a
definition for
𝒜𝑆(old 𝑡) when
𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒 is applied
first, since after
sanitation, there are
no more old in the
copied terms.

of the value associated to this variable:

𝑥 ↦ 𝒜𝑀(𝑉(𝑥)).
The cases for tuple and array projections are defined as follows:

𝑡1[𝑡2] ↦ 𝒜𝑀(𝑣𝑖),
when 𝑡1 evaluates to [𝑣0, … , 𝑣𝑛−1] and 𝑡𝑖 evaluates to 𝑖.

𝑡.𝑖 ↦ 𝒜𝑀(𝑣𝑖),
when 𝑡 evaluates to [𝑣0, … , 𝑣𝑛−1].

The terms which evaluation produces integers have an empty footprint.

𝑛 ↦ ∅
𝑡1 + 𝑡2 ↦ ∅
𝑡1 - 𝑡2 ↦ ∅

length 𝑡 ↦ ∅
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Finally, the memory footprint of the copy in a specification is the
union of the footprints of the copied terms:

𝒜𝑆(𝑠𝑝) =
𝑐−1
⋃
𝑖=0

𝒜𝑆(𝑡𝑖),

when 𝑐𝑜𝑝𝑖𝑒𝑠(𝑠𝑝) = [(𝑧0, 𝑡0), … , (𝑧𝑐−1, 𝑡𝑐−1)].

Example 18. Consider the following state 𝑆.

𝑥 ↦ 0

1 3 4𝑦 ↦ 𝑎𝑦 = 𝑢 ↦ 𝑎𝑢 =

5 7 4𝑧 ↦ 𝑎𝑧 = 42𝑣 ↦ 𝑎𝑣 =

0 0 0𝑎𝑧1 = 1 1 1𝑎𝑧2 =

In this state, we have:

𝒜𝑆(𝑥) = ∅
𝒜𝑆(𝑦) = {𝑎𝑦}

𝒜𝑆(𝑧) = {𝑎𝑧, 𝑎𝑧1, 𝑎𝑧2}
𝒜𝑆(1 + 𝑢[0].1) = ∅

𝒜𝑆(𝑢) = {𝑎𝑢, 𝑎𝑣𝑎𝑧2}

We can use this definition to define the cost of a copy as the sumof the
sizes of the memory blocks pointed by the addresses in the footprint.This definition is not

equivalent to
considering the cost
of the copy of a term
as the size of its logic
value. Indeed, logic
values do not take

memory sharing into
account.

Definition 18 (Cost of a copy). Let us note 𝒲𝑆(𝑠𝑝) the final cost of the
copies induced by 𝑠𝑝. We have

𝒲𝑆(𝑠𝑝) = ∑
𝑎∈𝒜𝑆(𝑠𝑝)

|𝑀(𝑎)| ,

where |𝑀(𝑎)| = 𝑛 when 𝑀(𝑎) = [𝑣0, … , 𝑣𝑛−1].

Example 19. In the state we considered above, we have:

𝒲𝑆(𝑥) = 0
𝒲𝑆(𝑦) = 3
𝒲𝑆(𝑧) = 5 + 3 + 3 = 11

𝒲𝑆(1 + 𝑢[0].1) = 0
𝒲𝑆(𝑢) = 2 + 2 + 3 = 7
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Note that although 𝑢 contains two pointers to 𝑣, the footprint
taken by 𝑣 is only counted once.

5.3.2 Moving old Upwards

The goal of the transformation 𝑜𝑙𝑑_𝑢𝑝 is to ‘move’ the old operators
upwards in the terms. That will lead to moving as much computations
under old as possible, so the term size is reduced beforewe copy it using
𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠.

Definition 19 (𝑜𝑙𝑑_𝑢𝑝). We define the term transformation 𝑜𝑙𝑑_𝑢𝑝 as
follows. For old terms, no transformation is needed:

old 𝑡 ↦ old 𝑡

In the other cases, 𝑜𝑙𝑑_𝑢𝑝 moves old upwards when it can transform
all the sub-terms into old. Note that in the case

of variables, we do
not add an old

primitive.
𝑥 ↦ 𝑥
𝑛 ↦ old 𝑛

𝑡1 + 𝑡2 ↦
⎧{
⎨{⎩

old (𝑡′
1 + 𝑡′

2) when 𝑜𝑙𝑑_𝑢𝑝(𝑡1) = old 𝑡′
1

and 𝑜𝑙𝑑_𝑢𝑝(𝑡2) = old 𝑡′
2

𝑜𝑙𝑑_𝑢𝑝(𝑡1) + 𝑜𝑙𝑑_𝑢𝑝(𝑡2) otherwise

𝑡1 - 𝑡2 ↦
⎧{
⎨{⎩

old (𝑡′
1 − 𝑡′

2) when 𝑜𝑙𝑑_𝑢𝑝(𝑡1) = old 𝑡′
1

and 𝑜𝑙𝑑_𝑢𝑝(𝑡2) = old 𝑡′
2

𝑜𝑙𝑑_𝑢𝑝(𝑡1) - 𝑜𝑙𝑑_𝑢𝑝(𝑡2) otherwise

𝑡1[𝑡2] ↦
⎧{
⎨{⎩

old (𝑡′
1[𝑡′

2]) when 𝑜𝑙𝑑_𝑢𝑝(𝑡1) = old 𝑡′
1

and 𝑜𝑙𝑑_𝑢𝑝(𝑡2) = old 𝑡′
2

𝑜𝑙𝑑_𝑢𝑝(𝑡1)[𝑜𝑙𝑑_𝑢𝑝(𝑡2)] otherwise

length 𝑡 ↦ { old (length 𝑡′) when 𝑜𝑙𝑑_𝑢𝑝(𝑡) = old 𝑡′

length (𝑜𝑙𝑑_𝑢𝑝(𝑡)) otherwise

𝑡.𝑛 ↦ { old (𝑡′.𝑛) when 𝑜𝑙𝑑_𝑢𝑝(𝑡) = old 𝑡′

𝑜𝑙𝑑_𝑢𝑝(𝑡).𝑛 otherwise

This definition is well-founded for the same reason as 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑 as it
applies to structurally decreasing terms.

Remark 14. When applying 𝑜𝑙𝑑_𝑢𝑝, we may end upwith more old prim-
itives than before, particularly around constants and operations on con-
stants. For instance the term 1 + x becomes old 1 + x. These old are
obviously unnecessary, but they (a) have a copy cost of 0 since they are
constants; (b) are easy to detect and remove if necessary.
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We generalize this transformation to predicates as a simple recursive
traversal that applies to terms. We also generalize it to specifications,
where we apply 𝑜𝑙𝑑_𝑢𝑝 to the postcondition.

Finally, the ultimate transformation applies the function 𝑜𝑙𝑑_𝑢𝑝 be-
fore 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠, but after 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛:The functions

𝑜𝑙𝑑_𝑢𝑝 and
𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 have

opposite effects, but
they are not the

inverse function of
each other.

𝑇𝑜𝑝𝑡 = 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠 ∘ 𝑜𝑙𝑑_𝑢𝑝 ∘ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 ∘ 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒

Example 20 (𝑇𝑜𝑝𝑡 examples). The term 1 + (old x)[0] is trans-
formed into old (1 + x[0]).
However, when considering the predicate

forall i, 0 <<= i < n -> 1 + (old x)[i] === 0,

we cannot transform 1 + (old x)[i] into old (1 + x[i]) be-
cause the variable i is not under old.
If we apply 𝑜𝑙𝑑_𝑢𝑝 ∘ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 to our example specification. We
get

domain a: (int array) array;

modifies a;

ensures length a[0] === old (2 * length a[0]) //\

forall i, 0 <<= i < old (length a[0]) ->

a[0][i] === old (a[0])[i]

Then, after 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠, we obtain the following final specific-
ation.

domain a: (int array) array;

modifies a;

let z_0, z_1, z_2 =

copy (2 * length a[0], length a[0], a[0])

in

ensures length a[0] === z_0 //\

forall i, 0 <<= i < z_1 ->

a[0][i] === z_2[i]

5.3.3 Correctness and Optimization

proof of correctness. The correctness of this transformation does
not make additional hypothesis on the specification. The transforma-
tion does not affect the good formation of the specification, nor does it
change its semantics.

Theorem 18 (𝑜𝑙𝑑_𝑢𝑝 preserves the good formation of the specification).
If 𝑠𝑝 is a specification, we have

𝑤𝑓 (𝑠𝑝) ⟺ 𝑤𝑓 (𝑜𝑙𝑑_𝑢𝑝 (𝑠𝑝))



5.4 concrete implementation in ortac: extensions and limitations 83

Proof. This is the same argument as in theorem 9: the old operator
does not affect the types of the terms.

Theorem 19 (𝑜𝑙𝑑_𝑢𝑝 maintains program correctness). If 𝑝 is a well-
formed program and 𝑠𝑝 is a well-formed specification, we have

𝑝 ⊨ 𝑠𝑝 ⟺ 𝑝 ⊨ 𝑇𝑜𝑝𝑡 (𝑠𝑝)

Proof. By induction on terms and predicates.

proof of optimization. When moving old up before introducing
copies, we reduce the cost of copies. In fact, the set of addresses that
copy needs to read when applying 𝑇𝑜𝑝𝑡 is a subset of the one obtained
after applying 𝑇𝑏𝑎𝑠𝑒 only.

Theorem 20 (𝑜𝑙𝑑_𝑢𝑝 reduces the set cost of the copies). For all specifica-
tions 𝑠𝑝, we have

𝒜 (𝑇𝑜𝑝𝑡 (𝑠𝑝)) ⊆ 𝒜 (𝑇𝑏𝑎𝑠𝑒 (𝑠𝑝)) .

It immediately follows that

𝒲 (𝑇𝑜𝑝𝑡 (𝑠𝑝)) ≤ 𝒲 (𝑇𝑏𝑎𝑠𝑒 (𝑠𝑝)) .

Proof. The function 𝒜𝑆 over terms ismonotonically non-increasing.

about optimality. Although this approach lets us save significant
memory space and thus computation time in some cases (e. g. see sec-
tion 5.5), it does not provide the optimal solution to minimizing the
copied memory.

Indeed, a trivial example would consist in a specification with the
postcondition old x === old x. Of course, the equality predicate is re-
flexive (see the rule P-Equal in section 4.3.3), so evaluating (or worse,
copying) x in this context is not necessary, but will not be avoided by
𝑇𝑜𝑝𝑡. One could imagine combining other methods (e. g. symbolic exe-
cution, abstract interpretation, or deductive verification) to tweak the
transformations further, but these experiments have not been conduc-
ted in Ortac yet.

In the context of Gospel, the predicates have the expressiveness of
the first-order logic, which is known to be undecidable [12, 43]. There-
fore, theremight be noway of deciding the optimal copieswhen consid-
ering a predicate of the form if 𝑃 then old x else old y. Instead,
Ortac has to copy both x and y, while only one of those might be
sufficient every time (e. g. if 𝑃 always holds).

5.4 concrete implementation in ortac: extensions and lim-
itations

Ortac applies the principles presented via the transformations of this
chapter to make Gospel specifications that contain old executable.
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However, Gospel’s logic is richer, so the actual implementation in
Ortac requires to extend these transformations, and sometimes faces
limitations.

5.4.1 Prestate Captures Applies to Predicates Too

In Microspel, old is a primitive that applies to a term and gives a term
back. In Gospel however, old can also apply to predicates. Therefore,
we need to establish new transformation rules so that 𝑜𝑙𝑑_𝑢𝑝 can ‘move’
old up in the predicates too.

Example 21. The case of quantifiers is interesting. Consider for
instance the following postcondition predicate:

forall i, 0 <<= i < n -> (old a)[0][i] === 0.

In Microspel, this predicate is transformed by 𝑇𝑜𝑝𝑡 into

forall i, 0 <<= i < n -> (old (a[0]))[i] === 0,

which later only requires copying a[0] rater than the full array a.
In Gospel, we can go one step further and propose

old (forall i, 0 <<= i < n -> a[0][i] === 0).

In that case, the predicate under old evaluates to a single Boolean
in Ortac, and no copies at all are necessary.

See chapter 6 for
more details about

the interpretation of
predicates by

Ortac.

In Ortac, 𝑜𝑙𝑑_𝑢𝑝 is slightly different. Let us consider a modified
transformation 𝑜𝑙𝑑_𝑢𝑝′ that acts like 𝑜𝑙𝑑_𝑢𝑝 except it adds old around
quantified variables. The transformation for quantifiers is then as fol-
lows:

forall i, 𝑡1 <<= i < 𝑡2 -> 𝑃 ↦
⎧{{{{{
⎨{{{{{⎩

old (forall i, 𝑡′
1 <<= i < 𝑡′

2 -> 𝑃′)
when 𝑜𝑙𝑑_𝑢𝑝′(𝑡1) = old 𝑡′

1
and 𝑜𝑙𝑑_𝑢𝑝′(𝑡2) = old 𝑡′

2.
and 𝑜𝑙𝑑_𝑢𝑝′(𝑃) = old 𝑃′.

forall i, 𝑜𝑙𝑑_𝑢𝑝(𝑡1) <<= i < 𝑜𝑙𝑑_𝑢𝑝(𝑡2) -> 𝑜𝑙𝑑_𝑢𝑝(𝑃)
otherwise.

In other words, we apply old to a quantified predicate if and only if
all its sub-terms and sub-predicates except for variables introduced by
quantifiers can be put under old.

Example 22. If we consider the predicate

forall i, 0 <<= i < old (length m) -> old m[i] === 0,
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the function 𝑜𝑙𝑑_𝑢𝑝 does not let us go any further, because of the
variable i. However, when applying the rule above, we get the
following predicate:

old (forall i, 0 <<= i < length m -> m[i] === 0),

which we can compute in the prestate and get a single Boolean
to save, rather than the full array m.

5 .4.2 Some Terms May Require Allocating New Memory

In Microspel, the terms constructs do not need to allocate memory,
and their result is always smaller in memory than their arguments. In
other words, they are memory projections. When considering Gos-
pel’s terms however, this is not always the case, because they feature
calls to arbitrary functions. In the general case, calls to functions that There are conditions

for a function to be
usable in a
specification. See
chapter 2.

are declared pure can appear in specifications. A natural extension of
𝑜𝑙𝑑_𝑢𝑝 is to transform function calls the following way:

f (old x) ↦ old (f x),

which is indeed correct if f is pure. These functions, provided by the
user and written in OCaml, can allocate memory during their execu-
tion, and return values that are larger than their arguments. In that case,
transforming f (old x) into old (f x) in 𝑜𝑙𝑑_𝑢𝑝 actually increases the
cost of the copies.

Correctly deciding whether to apply this rule or not is again unde-
cidable, because f can contain arbitrary code. In Ortac, we default
to always moving old upwards, as we observed most of the functions
used in specifications are actually projections, or conversions (i. e. from
one container to another, with equivalent memory complexity).

However, one could imagine a static allocation analysis to decide
whether to apply it or not depending on the context, in particular if
space complexity specification makes it way into Gospel in the future.
We also experimented with a heuristic based on types to try and im-
prove the decision making. For instance, one could approximate that
a string is smaller than a string array. However, most of these ap-
proximations are over-simplifications that are easy to contradict, and
their use did not show significant improvements in practice.

5.4.3 Branching Leads to Worse CPU Time

In some cases, some of the branches of the control flow of the specifica-
tion do not need to be executed, for instance when using a conditional
branching. In such situations, applying 𝑜𝑙𝑑_𝑢𝑝 can induce additional
CPU cost, even if it preserves the memory optimization property. Let
us explore this trade-off through an example.
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Example 23. Let us consider a predicate of the following form:

if P then sorted (old x) else sorted (old y),

where sorted returns a sorted version of its argument.
In our previous discussion about the optimality of 𝑇𝑜𝑝𝑡, we es-
tablished that in the general case, we have to copy both x and y.
However, when applying 𝑜𝑙𝑑_𝑢𝑝 to this predicate, we obtain

if P then old (sorted x) else old (sorted y),

which leads to (a) sorting the original arrays x and y; (b) copying
both the resulting arrays.
Therefore, applying 𝑜𝑙𝑑_𝑢𝑝 not only makes us copy two arrays,
but also execute potentially costly operations that is ultimately
not necessary for the check: we sort two arrays instead of one.

Scenarii like this one show a weakness of this approach when facedThis issue arises even
without introducing

function calls.
to code containing branching, as correctly checking those actually re-
quire to execute all the branches, even those that will not, in the end,
be useful to the check. In Ortac, we resolve this time-memory trade-
off by choosing to always apply 𝑜𝑙𝑑_𝑢𝑝, as our experiments show the
typical use-cases benefit from it. We do, however, provide an option
to deactivate the optimization if the user knows they might be facing
tricky cases.

5.5 example and benchmarks

In this section, we show how Ortac applies these specification trans-
formations to an existing program implemented in OCaml and annot-
ated with Gospel specifications, making them executable and verifi-
able at runtime. We compare the optimization levels to demonstrate
that a simple program and its specification are sufficient for this op-
timization to be critical to the performance and practicability of the
instrumentation in production.

5.5.1 A Maze Generator

Our stress test program takes an integer 𝑛 as input and generates a
perfect, random maze on a 𝑛2 square grid. A maze is perfect when for
any pair of points 𝐴 and 𝐵, there exists a single path between 𝐴 and 𝐵.
The algorithm is as follows:

(a) Create a list 𝒲 of all the possible walls in the grid.

(b) Create a set of sets of cells 𝒞 containing the singletons {𝑐} for each
cell 𝑐.

(c) For each wall in 𝒲, in some random order,
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• if the cells that this wall separates belong to distinct sets,
a) remove the wall from the list 𝒲;
b) join the sets of the formerly separated cells.

The set 𝒞 maintain the connected components of the grid, so during
each iteration, we remove a wall from 𝒲 if and only if it joins otherwise
disconnected components. The loop goes through all thewalls, so there
is only one connected component at the end of the iterations. Therefore,
the remaining walls in the list constitute a perfect maze.

A natural data structure implementation for 𝒞 is union-find [1]. Our The specifications in
these contracts is
partial, but sufficient
for our example.

OCaml implementation of the union-find exposes the interface repro-
duced in listing 5.1, which we instrument using Gospel contracts that
we aim to verify at runtime.

1 type t

2 (*@ ephemeral *)

3

4 val create : int -> t

5 (*@ uf = create n

6 checks n >= 0 *)

7

8 val num_classes : t -> int

9 (*@ pure *)

10

11 val find : t -> int -> int

12 (*@ pure *)

13

14 val union : t -> int -> int -> unit

15 (*@ union uf i j

16 modifies uf

17 requires 0 <= i < size uf

18 requires 0 <= j < size uf

19 ensures num_classes uf <= num_classes (old uf)

20 ensures find (old uf) i <> find (old uf) j

21 -> num_classes uf = num_classes (old uf) - 1

22 *)

Listing 5.1: Union-find module interface.

The type t represents an instance of the data structure: a set of sets
of cells that we represent with integer identifiers. Our module will be
operating in place, so this type is mutable, which is reflected by the
Gospel clause ephemeral.

The function num_classes returns the number of disjoint sets in The function find

may actually perform
path compression,
but as far as the
specification is
concerned, this is not
observable.

the data structure and find returns the representative element of a set.
These functions do not perform any writing effects (i. e. they do not
modify the union-find structure), do not raise exceptions, and always
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terminate. Therefore, they are considered pure by Gospel, andwe can
use them to specify other functions further.

Finally, the function union performs the union of two sets in the
structure. We will focus on this function in the rest of this example.
Its contract states it can modify the data structure with the modifies
clause. Because the type of union-find is mutable, and this function
potentially modifies it, executing properties that refer to the old struc-
ture version will require copies. Therefore, the transformations we
proposed in section 5.2 are relevant in this example.

5.5.2 Runtime Verification with Ortac

We use Ortac to generate OCaml code that checks these contracts at
runtime. More precisely, the generated implementation performs the
following operations:

(a) Check the preconditions and fail if they do not hold or raise an
exception.

(b) Evaluate the terms under old operators, and copy their values
into fresh variables.

(c) Call the function union and fail if it raises an exception.

(d) Replace the terms precomputed in step 2 with their value in the
postconditions, execute them, and then fail if they do not hold or
raise an exception.

5.5.2.1 Direct instrumentation

In this example, the transformations 𝑜𝑙𝑑𝑑𝑜𝑤𝑛 and 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒 do not modify
the specification, as there are no nested old or quantifiers.

In the unoptimized instrumentation, Ortac collects all terms ap-
pearing under old, evaluates them in the prestate, and then copies the
result. There are four occurrences of the old operator, all of which refer
to the old version of uf. The generated code is showed in listing 5.2.

5.5 .2.2 Optimized Version

In the optimized version, although the user can still write the spe-
cifications in the way that feels the most natural to them, Ortac pre-
processes the terms to propagate the old operator upwards, as ex-
plained in section 5.3. Ortac automatically rewrites the terms as if
the user had written the following postconditions:

ensures num_classes uf <<= old (num_classes uf)

ensures old (find uf i <<> find uf j)

-> num_classes uf = old (num_classes uf - 1)
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1 let union uf i j =

2 if not (0 <<= i <<= size uf) then fail ();

3 if not (0 <<= j <<= size uf) then fail ();

4 let old_1, old_2, old_3, old_4 =

5 copy (uf, uf, uf, uf)

6 in

7 (try union uf i j with _ -> fail ());

8 if not (num_classes uf <<= num_classes old_1 )

9 then fail ();

10 if not (

11 not (find old_2 i <<> find old_3 j)

12 ||| num_classes uf = num_classes old_4 - 1)

13 then fail ();

Listing 5.2: Naive instrumentation of union (𝑇𝑏𝑎𝑠𝑒).

1 let union uf i j =

2 if not (0 <<= i <<= size uf) then fail ();

3 if not (0 <<= j <<= size uf) then fail ();

4 let old_1, old_2, old_3 = copy (

5 num_classes uf,

6 find uf i <<> find uf j,

7 num_classes uf - 1)

8 in

9 (try union uf i j with _ -> fail ());

10 if not (num_classes uf <<= old_1 ) then fail ();

11 if not (not old_2 ||| num_classes uf = old_3 )

12 then fail ();

Listing 5.3: Instrumentation of union with optimized copies (𝑇𝑜𝑝𝑡).

This rewriting effectively moves to the prestate some computations
previously executed in the poststate. Therefore, it only triggers a copy
of the result of the computations (two integers and one Boolean in this
case) instead of the context necessary for the execution (here, thewhole
union-find structure). The instrumentation generated by Ortac now
has the form showed in listing 5.3.

We do not show the details of the wrapper code at this time, but
more details are provided about the generated code in chapter 6, in
particular about the fail calls, handling of exceptions, etc.

5 .5 .3 Benchmarks

We run our maze generator with multiple values of 𝑛. For each value,
we gather the execution time, the number of garbage collections, and
the cumulative amount of data copied by copy. We ran our benchmarks
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on an i7-1165G7@ 2.80GHzCPU, with 16GB of RAMusing the OCaml
4.14.0 compiler. Each data point is an average of 10 runs. We present
the results in figure 5.1.

𝑛 Instrument. Time (s) GC runs Copies (MB)

100
None 0.0026 0 -
𝑇𝑏𝑎𝑠𝑒 2.0 260 190
𝑇𝑜𝑝𝑡 0.0062 0 0.038

200
None 0.012 0 -
𝑇𝑏𝑎𝑠𝑒 30 4400 3000
𝑇𝑜𝑝𝑡 0.032 2 0.15

400
None 0.088 1 -
𝑇𝑏𝑎𝑠𝑒 680 31 000 48 000
𝑇𝑜𝑝𝑡 0.19 2 0.61

800
None 0.46 4 -
𝑇𝑏𝑎𝑠𝑒 ∞ ∞ ∞
𝑇𝑜𝑝𝑡 0.89 4 2.4

1600
None 2.2 5 -
𝑇𝑏𝑎𝑠𝑒 ∞ ∞ ∞
𝑇𝑜𝑝𝑡 3.9 5 9.8

3200
None 11 5 -
𝑇𝑏𝑎𝑠𝑒 ∞ ∞ ∞
𝑇𝑜𝑝𝑡 19 6 39

Figure 5.1: Benchmarks results for the old instrumentation

They show that naive instrumentations of the codemake it impractic-
able for large values of 𝑛, which timed out after one hour of execution.
On the other hand, the optimized version significantly reduces the cost
of the verifications to a constant factor no larger than 2. The limited
amount of data copied and limited use of the GC allow this cost mitig-
ation.

about complexity. Recall that the maze generation calls union un-
til there is only one remaining set (i. e. exactly 𝑛2 − 1 times) so its com-
plexity, when invoked with size 𝑛, is 𝒪(𝑛2 × 𝑢𝑓 (𝑛)), where 𝑢𝑓 (𝑛) is the
complexity of union. When one properly implements union-find, we
get 𝑢𝑓 (𝑛) = 𝒪(𝛼(𝑛)) ≈ 𝒪(1), so the complexity of the maze generation
is 𝒪(𝑛2) in the un-instrumented version.
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However, when copying the entire union-find structure (no optimiz-
ation and shared copies only), the instrumented union now needs to
copy a structure of size 𝑛2. This copy increases 𝑢𝑓 (𝑛) to 𝒪(𝑛2), which
in turn makes the total maze generation complexity 𝒪(𝑛4). Conversely,
the old propagation optimization does not require copying this much
data. Instead, it copies a fixed amount at each call (two integers and
one Boolean), and restores the original quadratic complexity of the
program.

related work

The efficient evaluation of old terms in runtime assertion checking is a
well-known and challenging problem for which there is still room for
improvement. In the general case, most tools copy the whole memory
state before the call to the function [23, 35], while acknowledging the
flaws of this approach.

ACSL [6] generalizes the old feature by introducing an \at(t, L)

operator, which lets the user specify arbitrary locations L in the code,
rather than restricting it to the function prestate. This extension leads
to possibly worse performance issues, with even more states needing
captures. While initial implementations of E-ACSL [42] used to per-
form a shallow copy of the variable contents only, which is incorrect in
most cases, more recent implementations provide a hybrid method to
reduce the copied memory space [40], but this approach has not been
detailed yet.

It is also worth mentioning that, as noted in [9], in the presence of
preconditions, the evaluation and copy of the old terms are meant to
be guarded by these preconditions. Accordingly, Ortac only evaluates
those once the corresponding preconditions are successfully verified.

Previous work have also explored other optimizations for runtime
assertion checkers, such as providing efficient representation of in-
tegers [24] or improving the verification of modifies clauses [26]. Re-
garding the former, Ortac benefits from zarith, which only switches
to arbitrary-precision integers when machine integers are not large
enough to store them without overflows. Regarding the latter, Ortac
always assumes that the variables provided by the user in the modifies
clauses are correct and even uses them to optimize the copies. They
are in the trusted part of the specification, and verifying these clauses
is still future work for Ortac at this point.

conclusion

In this chapter, we have presented the transformations performed by
Ortac to (a) be able to execute specifications containing old primitives;
(b) mitigate the cost of copying prestate values during postconditions
verifications. We supported this approach with a Coq formalization
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and proofs of correctness and showed its efficiency in a practical ex-
ample.

We presented the transformations in this chapter using Microspel,
which specifications are significantly simplified compared to Gospel’s,
tomake the presentation andproofs amenable and allow the techniques
to generalize in other specification languages. Ortac, however, goes
beyond Microspel and operates on Gospel specifications directly.
For instance, it moves old upwards in predicates, including quantifiers,
local variables, and user-defined predicates and functions.

In the next chapter, we discuss other interesting points of translating
Gospel terms and specifications. In particular, we did not explain here
howOrtac implements the copy function. We show in the next chapter
how it relies on the OCaml type-checker to take into account memory
sharing and optimizes for immutable data in order to limit even further
the cost of copying.







6
ORTAC: JO INT ING OCAML AND GOSPEL

So far, we did not dive into the implementation of Ortac and the
design and implementation choices that let us implement specifica-
tion verifications that respect Gospel’s semantics. This chapter shows
some challengeswhen instrumenting the code andhowOrtac handles
them.

6.1 type-guided code generation

Ortac leverages the information provided by the typing information—
of OCaml in the interface and of Gospel in the specifications—to
produce more accurate, or more optimized code.

6.1 .1 Copies

In the previous chapter, we explained what and when Ortac needs to
copy in order to execute predicates that contain the old primitive. We
did not, however, explore how this copy is implemented to provide the
correct deep-copy semantics at a limited cost.

Let us consider an example where we need to copy an array 𝑥 of pairs
of integers and an array 𝑦 of arrays of integers.

val x : (int * int) array

val y : int array array

The array 𝑥 has size 4 and contains two aliased pairs, respectively, its
first two cells and its last two cells. The array 𝑦 has size 3, and all its cells
point to the same array. The memory they use is represented below.

𝑥 ↦ 𝑦 ↦

6.1 .1 .1 Copying while Preserving Sharing

The first feature of copy we are interested in is the sharing preserva-
tion: shared memory in the original value should be shared in the copy

95
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for better compacity. A straightforward way of implementing such aMemory sharing is a
commonly used

feature of OCaml in
particular when

writing functional
data structures.

copy is to use the Marshal module from the OCaml standard library,
which implements marshalling. Copying is done by serializing and
then immediately deserializing the value:

let copy : 'a -> 'a = fun a ->

Marshal.from_string (Marshal.to_string a [Closures]) 0

This copy function is polymorphic, preserves sharing (per Marshal spe-
cification), and works correctly for cyclic values as well —the Marshal
functions are implemented using C code that traverses the memory
representation of values.

𝑥 ↦ 𝑦 ↦

𝑜𝑙𝑑_𝑥 ↦ 𝑜𝑙𝑑_𝑦 ↦

This approach presents two weaknesses: (a) it needs to allocate a
string to perform the serialization, which is immediately consumed
by the deserialization (although these strings are usually small, they
put unnecessary pressure on the GC); (b) it copies all memory blocks,
regardless ofwhether they representmutable or immutable values. The
first point is merely an implementation detail of the Marshal module.
The second point, however, is a legitimate weakness of this method.
Indeed, OCaml does not keep the type information at runtime, and
therefore exploring the memory does not give any information on the
mutability of the data being traversed.Rather, it keeps very

limited typing
information via tags.

We, however, do have some static information on the mutability of
data via via the Gospel type-checker and the modifies clauses of the
specifications. We wish to leverage this information in order to reduce
the copied size.

6.1 .1 .2 Sharing Immutable Values with the Prestate

Rather than using Marshal, we can use the type of the expression to
copy in order to generate a monomorphic copy function by recursively
composing primitives. When we encounter an immutable value (or a
value that does not appear in the modifies clause), copy is the iden-
tity function.
Remark 15. More than inspecting the root type of a value is required to
determine immutability. Values of type t list are only immutable if
t is also an immutable type.



6.1 type-guided code generation 97

For instance, when copying x : (int * int) array, we generate:

• a function to copy (int * int) array values, given a function
to copy (int * int) values:
let copy_int_pair_array a : int array =

Array.map copy_int_pair a

• a function to copy (int * int) values (which are immutables):
let copy_int_pair = identity

We proceed similarly to generate a function copy_int_array_array to
copy 𝑦.

let copy_int = identity

let copy_int_array a : int array =

Array.map copy_int a

(* Final copy function for y *)

let copy_int_array_array a : (int array) array =

Array.map copy_int_array a

After the copy, we obtain the following memory:

𝑥 ↦ 𝑦 ↦

𝑜𝑙𝑑_𝑥 ↦ 𝑜𝑙𝑑_𝑦 ↦

Note how 𝑜𝑙𝑑_𝑥 now has pointers to 𝑥, rather than duplicating immut-
able data.

There is, however, a significant drawback: this copying method only
preserves sharing between immutable data but not between imperative
values. While this is luckily the most common scenario for sharing in
OCaml, there are still many examples of sharing between (partially)
imperative data, for instance, when one implements polymorphic con-
tainers with sharing but instantiates them with mutable types. There-
fore, this solution is only partially satisfying.

6.1 .1 .3 The Best of Both Worlds

The actual implementation in Ortac attempts to achieve the best of
bothworlds. It performs similarly to the implementation in Marshal: by
memoizing the result of the copies using OCaml’s physical equality:
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let copy_int_array =

let module H = Hashtbl.Make(struct

type t = int array

let equal = (===)

let hash = Hashtbl.hash

end) in

let tbl = H.create 0 in

fun a ->

try H.find tbl a

with Not_found ->

let copy_a = Array.map copy_int a in

H.add tbl a copy_a;

copy_a

Remark 16. The contents of the memoization table must be cleared
before each new specification verification so previous copies are dis-
carded.

By implementing this memoization on top of the monomorphic copy
generation presented previously, we can achieve themost compact deep
copy:

𝑥 ↦ 𝑦 ↦

𝑜𝑙𝑑_𝑥 ↦ 𝑜𝑙𝑑_𝑦 ↦

It does share a limitation with the previous solutions: this is only
possible when the mutable parts of the value to copy are fully known;
e. g. when it does not involve polymorphic or abstract parts. When it
does, generating a copy function by following the type definition is no
longer possible, and Ortac falls back to the Marshal module to copy
the whole term, as presented in section 6.1.1.1.
Remark 17. One could think of a hybrid solution: use a type-guided
approach for as long as the type is known, then fall back to Marshal to
copy only the abstract or polymorphic parts. In that case, though, the
result is neither guaranteed to preserve sharing nor to save copying of
immutable data.

6.1 .2 Equality Functions

On the one hand, Gospel provides a polymorphic equality operator
(=)which semantics corresponds to the logic equality and depends on
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the type of the compared values. For instance, two sets provided by the
Gospel standard library are equal if and only if they contain elements
that are equal with respect to their logic equality. We have used this
predicate extensively in the examples of chapter 2, and it is a central
point of most specifications.

On the other hand, OCaml also provides a polymorphic equality
operator (=). Its semantics, however, is defined in different terms. It is
a structural equality, meaning that it recursively compares the contents
of the values, including when they are mutable. This definition needs
to be revised to fully understand the function’s behaviour: it is worth
detailing what structure is compared, i. e. the structure of the memory
representation of the values. For instance, two sets from the OCaml
standard library are equal if and only if they are represented by equal—
structurally, not physically—equal binary tree internally.

Although their semantics are defined differently, they coincide for
many basic types and type compositions, e. g. machine integers, lists,
arrays, records, and variants. Therefore, it is tempting to implement
Gospel’s polymorphic equality using OCaml’s polymorphic equality,
which would also have the advantage of being predictable for OCaml
developers. This is not, however, what Ortac does.

why avoid ocaml’s polymorphic equality? There are several
reasonswhyOrtac avoids implementing Gospel’s logic equalitywith
OCaml’s polymorphic equality provided in the standard library.

• When applied to functional values, it fails at runtime with an
Invalid_argument exception. While the generated code would
still be valid (Ortac reports that it cannot translate the property),
this case can be detected and reported at the instrumentation time
rather than on each run.

• When applied to cyclic values, it may not terminate (mainly if
the values are equal) or raise an exception (e. g. if it overflows
the stack), depending on the structure of the arguments. When
it does not terminate, the process also cannot be stopped with a
SIGTERM signal because the program running is C code from the
OCaml runtime.

• On a conceptual level, the polymorphic equality breaks the mod-
ule abstraction barrier (and even the OCamlmemory representa-
tion abstraction!). Gospel and Ortac are higher-level languages
that tend to avoid this.

• Finally, as we already mentioned, OCaml’s equality implements
a different relation than Gospel’s logic equality. It is agnostic of This is a frequent

source of bugs in
OCaml and using
the polymorphic
equality generally be
used with caution.

the type of the compared values and compares their memory rep-
resentations. It is specific to the implementation users choose for
their types and can even be affected by compiler optimizations!
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Therefore, when translating Gospel’s polymorphic equality, Or-
tac implements ad-hoc polymorphism, generating the corresponding
monomorphic functions. It substitutes them in the instrumentation,
similar to the one described for copies (see section 6.1.1). Primitive
types are known to Ortac, along with their equality predicates. It
composes the equality functions isomorphically to the structure of the
type, just like copy. When a type is unknown or does not have an at-
tached equality predicate (e. g. type variables in polymorphic types,
abstract types, functional types), the equality predicate is deemed non-
executable and is rejected.

Note that this solution does not prevent equality tests of cyclical val-
ues from not terminating. However, it does mitigate the issue in two
ways: (a) before comparing values structurally with their types, it com-The compare

function from the
standard library also
implements this trick

based on physical
comparison.

pares themphysically, so cyclic values that are physically equal (or have
physically equal parts) are properly compared; (b) since the generated
implementation is pure OCaml code and does not contain C bindings,
the program still properly responds to SIGTERM signals by exiting.

6.1 .3 Printing, Hashing, Comparing

The functions copy and equal are necessary to implement the specific-
ations that involve Gospel’s (=) and old. In some cases, it is also
helpful to generate monomorphic print, hash or compare functions.
Unlike copies or equality, these functions are optional to the instru-
mentation, but they are helpful to generate more performant code or
provide more useful feedback to users. The generation process is the
same: it is guided by the types and may fail statically (e. g. at the gen-
eration time) and issue a warning if it reaches polymorphic or abstract
types.

comparing and hashing. Comparing and hashing are perform-
ance helpers that Ortac uses when it generates verifications. For in-
stance, Ortac needs them to implement efficient sets when translating
Gospel’s standard library’s sets or to generate memoized recursive
functions as we showed in chapter 3. The polymorphic compare and
hash functions provided by the standard library are sometimes enough
for these use cases as they are less restrictive. For instance, the hash

function is guaranteed to terminate. However, even when we apply
them to types that make their execution safe, they might not be compat-
ible with the equality functions for these types. For instance, compare
nan nan evaluates to 0 and Hashtbl.hash nan = Hashtbl.hash nan

evaluates to true, but nan = nan evaluates to false, in accordance
with the IEEE 754 standard for floating point arithmetics [22]. There-
fore, using them in the generated code can introduce inconsistencies
with respect to the equality predicate and erroneous verifications.
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printers. Finally, Ortac also generates printers for the values in-
volved in the specifications so that the error messages presented in the
error messages (see chapter 3) contain the actual arguments.

$ ./fib 4242

File "fibonacci.mli", lines 8-13, characters 0-30:

Runtime error when executing fib 4242 :

- the precondition

fibonacci 4242 <<= Int.max_int

did not hold.

This makes it easier for users to understand them and to replay failed
test cases. When printers cannot be inferred, the error messages only
show the variable names given in the specifications:

$ ./fib 4242

File "fibonacci.mli", lines 8-13, characters 0-30:

Runtime error when executing fib n :

- the precondition

fibonacci n <<= Int.max_int

did not hold.

6.1 .4 Limitations and Fallbacks

This approach of type-based generation applies well to fully known
types. However, it is not applicable in all cases, and three scenarii pre-
vent it from succeeding: abstract types, polymorphic types, and func-
tional types. If the type of a term is abstract, polymorphic, or functional
(or contains parts that are), it is no longer possible to generate mono-
morphic functions based on the type definition. Ortac provides two
ways to overcome this and execute the specifications.

user-provided functions. In many OCaml interfaces exposing a
type, developers also expose an equal function that implements mean-
ingful equality (as opposed to the structural equality ofmemory repres-
entations). In those cases, users may say so using the equality clause
in the function specification. Gospel checks that it indeed has the type
of an equality function (possibly parametrized by higher order equal-
ity functions when the type is polymorphic), and Ortac uses it as the
equality function for this type in its monomorphic function generation.

While exposing an equal in an interface is idiomatic, exposing a hash
function is pretty rare. When optional functions (e. g. print, compare,
or hash) are missing, Ortac can also give up on the corresponding
optimization and fallback to a less efficient (or comfortable) imple-
mentation. For instance, when hash is missing but compare is present,
the memoization is implemented with a reference pointing to a finite
map from OCaml’s standard library; when only equal is available,
Gospel’s sets are implemented with lists. When Ortac falls back to
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inefficient implementations, it reports it to the user as a warning during
the instrumentation phase.

polymorphic functions. When the user does not provide those
functions, the only fallback is to use the standard library polymorphic
functions. Ortac does not do it by default for all the reasons discussed
earlier, but it provides an option to allow this behaviour.

mixing approaches. All these options are mutually exclusive: Or-
tac ensures that all the functions used in its generated code come from
the same source (type, user, or standard library) to reduce the risk of
incompatible functions. Note that Ortac does not check that all theseVerifying at runtime

that these functions
are compatible is

possible but was not
implemented.

functions are compatible: when the user provides functions, it is their
responsibility to ensure this property.

Example 24 (User-provided functions and generated functions
may be incompatible). For instance, consider the following ex-
ample of a module implementing rational numbers using a non-
reduced couple of integers and exposing an equal function that
judges whether two rational numbers are equal:

type rat = int * int

val equal: rat -> rat -> bool

(*@ equality *)

In this module, the same number (in the sense of equal) can
be represented with multiple different OCaml values. For in-
stance, (1, 2) and (3, 6) both represent 1

2 . However, the type-
generated (or the polymorphic) compare will judge whether
these values differ.
If one now wishes to implement sets of rational numbers using
OCaml’s sets built with such a compare function, they cannot
retrieve values as expected. The following code fails the assertion
check:

module Set = Set.Make (struct

type t = rat

let compare = Stdlib.compare

end)

let () =

let s = Set.singleton (1, 2) in

assert (Set.mem (3, 6) s)
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6.2 type invariants

In Gospel, the specifier can attach invariants to types. They describe
properties that hold (a) for all values of this type; (b) at all times outside
of the abstraction barrier. In particular, values stored inside containers
(e. g. lists, arrays, or records) must also obey their invariants. However,
it is possible for internal functions to temporarily break these invariants,
so long as they are restored before the function returns. This applies to
function arguments but also global values and internal states.

For instance, the specification of the type of union-find presented
in section 2.3 could mention that there are always fewer classes in the
structure than its full size, and these are both positive integers:

type t

(*@ ephemeral

with self

invariant 0 <= num_classes self <= size self *)

The first line, with self, introduces the name of the value of the type
t, so we can use it in the invariant itself in the second line.
Remark 18. At first sight, this definition looks suspiciously cyclic: the
type t is defined in terms of num_classes and size, which are defined
over the type t. However, one can always rewrite it using a Gospel
axiom instead of an invariant, which would detach the property from
the type definition and break the cyclicity:

type t

(*@ ephemeral *)

(*@ axiom t_inv : forall (self: t).

0 <= num_classes self <= size self *)

6.2.1 How Invariants are Checked

The first, easy step to check these invariants is to translate them into
OCaml expressions and generate a checking function for them, which
we may call whenever we want them to hold. Again, this step may
statically fail if the invariant is not deemed executable, in which case
the invariant is ignored, and a warning is issued by Ortac.

However, being able to verify the invariants on one value of the type is
not sufficient. Indeed, the values are not always immediately accessible
for verification, for instance, if they are stored inside containers or are
part of a larger value. For instance, one may write a function returning
a list of values of type t:

val f : unit -> t list

In that case, all the values in the returned list must satisfy the invariant.
In general, values of type t can be nested into arbitrary types, which
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can be part of the Gospel standard library (if the function is a logic
function), the OCaml standard library, or written by the user.

In order to perform the correct verifications, we, therefore, have to
(a) determine for each input and output whether they carry values of
types that have invariants attached; (b) in that case, generate iterators
to access these values. The iterator generation is performed the same
way as copy (see section 6.1.1): it is guided by the type definition and
composes the iter functions available for each type. For instance, for
the function f shown before, Ortac generates the following iterator:

let iter_t_list (f: t -> unit) (x: t list) =

List.iter f x

The generator works similarly as long as the container type is well-
known. Here is another example of values of type ((t * 'a) list)

Set.t appear in themodule. Note that the type neednot be fully known
(this one is polymorphic); only the container (and its associated iter

function) is required.

let iter_t_a_pair (f: t -> unit) (x: t * 'a) =

f (fst x)

let iter_t_a_pair_list (f: t -> unit) (x: (t * 'a) list) =

Set.iter (iter_t_a_pair f) x

let iter_t_a_pair_list_set (f: t -> unit)

(x: ((t * 'a) list) Set.t) =

Set.iter (iter_t_a_pair_list f) x

In both examples, the containers are either part of the language
(pairs), defined in the OCaml standard library (lists) or in the Gospel
standard library (sets). All of those are known to Ortac; therefore,
the iterators generation is not a problem. Sometimes, however, the
container is part of the user codebase and is not exposed:

type 'a container

val g : unit -> t container

In that case, there is no fallback polymorphic solution like for copy
or equal. The user may expose an iter function, annotated with anRecall that runtime

values do not hold
type information.

iterator specification (this is only used by Ortac and is not part of
the Gospel language):

val iter : ('a -> unit) -> 'a container -> unit

(*@ iterator *)

If the user does not provide such a function, the invariant cannot be
checked on the return values of g (it may still be checkable in other
functions), and a warning is issued.

Now that we have a function generated by Ortac that checks the in-
variants of a value, we have to decidewhen to call the checking function
to enforce the invariants.
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6.2.2 When Invariants are Checked

The most straightforward solution seems to follow the definition: we
can check the invariants on all accessible values of that type at every
function’s entrance and exit (normal and exceptional). We can achieve
this by maintaining a list of weak pointers (i. e. pointers that the GC
does not follow and may collect as soon as the pointee is collected) of
previously seen values at the interface of the functions in the module.
However, this would be very costly and is often unnecessary.
Remark 19. When a function does not have a contract attached, it still
must maintain all the type invariants. Therefore, Ortac produces
wrappers even for functions that are not specified.

abstract types. Abstract types can only be modified by the mod-
ule’s functions where they are defined. Therefore, checking the invari-
ants at the function exits only is sufficient to ensure they hold every-
where.

immutable values. In the case of immutable values, checking the
invariant once is enough. More generally, values that are ‘locally im- One could also

maintain a set of
already checked
values to ensure that
the invariants are
checked exactly once.

mutable’, i. e. values that do not appear in the modifies clause also do
not need to be checked since these clauses are in the trust base of the
specification (see chapter 3).

the case of public types. In the case of public types (or types that
contain publicly modifiable parts), checking the invariants at every
function entry is also necessary since they might have been modified
from outside the module.

consumed values. Gospel features a consumes clause in function
contracts that lets users specify that a value must not be used any-
more after the call. For instance, when specifying an interface for file
descriptors (or OCaml channels) manipulation, the close operation
consumes its argument, which is now invalid for further use.

val close_out : out_channel -> unit

(*@ close_out ch

consumes ch *)

Ortac instruments these clauses by keeping track of all consumed
values with a set of weak pointers to these values. This set typically
remains small since pointers to consumed values are usually not kept
alive for long (when the code is correct); the impact on performance
should beminimal. Before each function call, it checks if the arguments
were previously consumed and reports it to the user. When it comes to
type invariants, they are not checked on consumed values.
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6.3 exceptions

This section shows how Ortac instruments the code to consider excep-
tions, whether raised by the instrumented implementation or by the
generated code itself.

6 .3.1 Exceptions Raised when Executing Specifications

In chapter 3, we showed that Ortac sometimes statically fails when
it determines that it cannot translate a term into an executable OCaml
expression, e. g. when it faces a logic function with no definition. In
that case, it shows a warning to the user and does not translate that
part of the specification. However, there are situations where a term
seems executable, but its execution raises an exception instead.

6.3.1 .1 How Executing Pure Specifications Can Raise Exceptions

In Gospel, the logic domain is pure. Therefore itmay seemunexpected
that executing a specification can raise an exception at all. However,
the OCaml instrumentation by Ortac creates potential sources of
exceptional behaviour.

exceptions linked to the environment. First, no matter how
pure the generated OCaml expression is, it is always possible that its
OCaml execution raises an exception due to the execution environment.
Indeed, memory allocations may result in Out_of_memory, recursive
functions calls can raise Stack_overflow, or a user interrupt via CTRL-
cwill raise Sys.Break. When these asynchronous exceptions are raised,
we can deduce nothing from the execution of the specification, and the
only reasonable behaviour is to report it back to the user.

gospel’s total logic and gospel standard library. Second,
some functions from the Gospel standard library are pure because
Gospel’s logic is total, but their actual implementation in Ortac is not.
Let us consider the function Sequence.get from the standard library,
which returns the 𝑖th element of a sequence.
(*@ val get : 'a t -> int -> 'a *)

If 𝑖 is outside the bounds of the sequence, the function cannot raise
an exception since it is a logic function. Instead, it always returns an
arbitrary value of the correct type with only one piece of information
available: it is equal to itself. Moreover, since logic functions provide
referential transparency, it is equal to all other calls to Sequence.get

with the same arguments. Implementing such a mechanism for total
functions is generally not possible for multiple reasons:It is possible by

tricking the
type-checker with
Obj.magic or the
like, but we do not

want to go down that
path.

• If the return type is polymorphic, then the type-checker does not
allow crafting an arbitrary value of that type.
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• When crafting a value is possible (e. g. because the type is known),
picking a default one is still unsound. Indeed, a single default
value does not allow us to enforce that it equal to itself and other
same calls, yet different from default values created by different
calls. For instance, according to Gospel’s semantics, we must
ensure that 1/0 = 1/0 holds but 1/0 = 2/0 does not.

• Some types have invariants attached to them, making crafting
values even more complex, if not impossible. Even though this is

rarer, there is no
guarantee that the
type is inhabited at
all!

• Even if crafting a default value is not necessary, the memoiza-
tion mechanism required to ensure referential transparency is
only possible if we can generate at least an equal function for all
the argument types, which is not always possible. In the case of
Sequence.get, that would mean using OCaml’s polymorphic
equality. We already discussed the issues in that case in sec-
tion 6.1.2.

Therefore, Ortac does not try to mimic Gospel’s totality when im-
plementing the standard library. Instead, it uses exceptions like they are
used in the OCaml standard library: for instance, executing Sequence.get
s (-1) raises an exception.

ocaml pure functions. Third, some functions from the OCaml
domain are marked as pure (and therefore are allowed in specifica-
tions). However, their implementation can be faulty or contract pre-
conditions can be violated. Let us explore this possibility through the
following specification for the Array.get function:

type 'a array

(*@ model { m : 'a Sequence.t } *)

val get : 'a array -> int -> 'a

(*@ v = get a i

requires 0 <= i < Sequence.length a.m

pure

ensures v = a.m[i] *)

In this example, the function get is pure on the condition that its precon-
dition is satisfied. Now consider the following specification for copy. Recall that we do not

statically know if a
function’s
precondition is
satisfied.

val copy : 'a array -> 'a array

(*@ y = copy x

ensures forall i,

0 <= i < length x ->

get x i = get y i *)

If the implementation of copy is erroneous, then y can be a different,
smaller size from x. In that case, the call get y i violates the precon-
dition for get, and the function’s behaviour is undefined. Under Gos-
pel’s totality logic, it should return an arbitrary value of type 'a, but
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this is not what get does in the standard library. The get implement-
ation is such that executing that call will raise an Invalid_argument

exception instead.
Whether the responsibility lies on the caller, the callee, or the environ-

ment, Ortac cannot statically determine that an exceptional behaviour
will occur. Therefore, we must account for that when generating the
wrapper and deal with the potential exceptions when executing spe-
cifications appropriately.

6.3.1 .2 The Instrumentation of Terms

There are multiple ways of dealing with exceptions raised by the execu-
tion of specification terms. We already determined in the last section
that replacing the faulty term result with a ‘default value of the correct
type’ is not technically practicable. Another solution is to silence the ex-
ception and falsify the predicate that uses the failing term. For instance,
v = a.m[i] would evaluate to false if the evaluation of a.m[i] raises
an exception. This approach is arguably a risky choice: the predicate
not (v <<> a.m[i]) would evaluate to… true! Ortac does not imple-
ment any of these methods: silencing exceptions introduces implicit
computation rules that users are unfamiliar with, providing unpredict-
able and misleading results.

The approach taken by Ortac is to consider the whole root clause
to have failed if one of the sub-terms raised an exception. Because
the nature of the failure differs from a contract violation (a failure to
check for a violation), we report this using a specific exception. In
the generated code, Ortac wraps all clauses evaluation in a try with

block to catch and report exceptions. Let us take back the function
Queue.unsafe_pop presented in listing 2.4 and illustrate this on the
verification of its precondition.

val unsafe_pop: 'a t -> 'a

(*@ v = unsafe_pop q

requires elements q <> []

modifies q

ensures old elements q = (elements q) @ [v] *)

The instrumentation of that function is a wrapper of the following form
that catches and reports execution failures in the specification.Like before, the

details of the failure
depend on the testing

frontend (see
chapter 3).

let unsafe_pop q =

if not

try (elements q <<> [])

with e -> undefineness_failure e

then correctness_failure ();

..... (* Call the function and check the rest of

the contract *)
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One may also propose a hybrid reporting about such failures: (a) on
the one hand, exceptions raised by the execution of terms always report
a specific trigger to the user to warn that the specification could not be
fully checked; (b) on the other hand, when the instrumenter can de-
termine that the clause is violated regardless of the result of that execution,
a regular specification violation is also reported. This approach would
require a finer analysis to determine the position (negative or positive)
in the root predicate. It has not been implemented in Ortac.

the special case of old. In this context, we must take special
care of terms under the old operator. In chapter 5, we showed how
Ortac evaluates these terms: it evaluates it as much as possible in the
pre-state, then copies the result of the computation and uses it in the
post-state verification. The instrumentation would therefore be of the
following form:

let unsafe_pop q =

..... (* Check the precondition *)

let old_elements_q = copy (elements q) in

let v = unsafe_pop q in

if not

try old_elements_q = List.append (elements q) [v]

with e -> undefineness_failure e

then correctness_failure ()

Consider the case where the elements q under old raises an exception.
With this instrumentation, the exception is not caught by the instru-
mentation code and is leaked directly to the user before the function is
executed. Wrapping the copy inside a try with reporting block would
also be incorrect: it would prevent the function from being executed
and the other postconditions from being verified. Moreover, the old

term may not even be needed in the execution at all because of some
lazy operations (e. g. implying conditionals), in which case the excep-
tions should not be reported at all. Instead, we must ensure that the
execution carries on, and the failure must only be reported in the post-
state, where it is used. Therefore, when evaluating a term old 𝑡, we
try to evaluate 𝑡 and store the result (whether it is a value or an ex-
ception) in an OCaml result instead, then we copy it. Errors are
never reported at this point. Then, when it appears in the predicate,
rather than using old_elements_q directly, we have to unwrap it and
re-raise the exception, which will, in turn, be caught by the try with

block surrounding the postcondition check. This is where the reporting
happens.

let unwrap = function

| Ok v -> v

| Error e -> raise e
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In the end, we obtain the following instrumentation.Note that we also
deep-copy the

exception e, as it
could also carry
mutable values.

let unsafe_pop q =

..... (* Check the precondition *)

let old_elements_q = copy (

try Ok (elements q) with e -> Error e

) in

let v = unsafe_pop q in

if not

try

unwrap old_elements_q = List.append (elements q) [v]

with e -> undefineness_failure e

then correctness_failure ()

6.3.2 Exceptions Raised by Functions

Apart from exceptions raised by the generated code while verifying the
specifications, Ortac also has to deal with the exceptions the instru-
mented functions may raise. Functions with a specification attached
should not raise exceptions unless specified otherwise. Therefore, the
basic instrumentation around functions wraps calls in try with blocks
that catch exceptions and report them to the user as forbidden excep-
tions.

By default, Ortac makes a particular case for the three exceptions
mentioned in section 6.3.1.1 and lets them through as they might not
be related to the program logic at all, but this is easily customizable by
the user.

let unsafe_pop q =

..... (* Check the precondition and compute old *)

let v =

try Queue.unsafe_pop q

with

| (Sys.Break | Stack_overflow | Out_of_memory) as e ->

raise e

| e -> unexpected_exception_failure e

in

..... (* Check the postcondition *)

v

Some clauses in the function specification can allow it to raise excep-
tions: via exceptional postconditions (raises) or defensive precondi-
tions (checks).

6.3.2.1 Exceptional Postconditions

Consider now the variant pop_exn, which raises Empty if the input
queue is empty and, in that case, does not modify it.
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val pop_exn: 'a t -> 'a

(*@ v = pop_exn q

modifies q

ensures old elements q = (elements q) @ [v]

raises Empty -> elements q = old (elements q) = [] *)

The translation of the exceptional postcondition is rather straightfor-
ward. When an exception appears in a raise clause with an associated
predicate, we generate a case at the top of the exception matching that
checks the associated predicate and re-raises the exception if it holds. Note that the

precautions described
in the previous
section are also
applied when
exceptional
postconditions are
checked.

let pop_exn q =

let elements_q = copy (

try Ok (elements q) with e -> Error e

) in

let v =

try Queue.pop_exn q

with

| Empty as e ->

if not

try (elements q = unwrap elements_q

&&& unwrap elements_q = [])

with e -> undefineness_failure e

then correctness_failure ();

raise e

| (Sys.Break | Stack_overflow | Out_of_memory) as e ->

raise e

| e -> unexpected_exception_failure e

in

..... (* Check the normal postcondition *)

v

Remark 20. When the function also involves types with invariants at-
tached, those must be checked in all the exceptional branches we just
generated.

6.3.2.2 Defensive Functions and Invalid Arguments

In function specifications, the user may also write defensive precondi-
tions in checks clauses. As explained in chapter 2, when a function
has checks 𝑃 in its contract, we have to check that the function raises
Invalid_argument if and only if the predicate 𝑃 does not hold in the
prestate. Let us switch to the pop variant, which defensively checks that If multiple checks

clauses are present,
their conjunction
must hold.

the input queue is not empty.

val pop: 'a t -> 'a

(*@ v = pop q

checks elements q <> []
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modifies q

ensures old elements q = (elements q) @ [v] *)

The checks clause is a precondition, so we evaluate the predicate in
the prestate. However, we do not check it until the poststate: we areThe evaluation of the

predicate leads to a
value of type bool:

it does not need to be
copied.

interested in the function reaction to the input rather than the condi-
tion on the input itself. After the function execution, we add a case for
Invalid_argument in the error matching and check that (a) if the func-
tion raised Invalid_argument, then the precondition was not verified
(otherwise, it is a false negative); (b) in all other cases (normal exit and
other exceptional exits), the precondition was verified (otherwise, it
should have raised Invalid_argument, and it is a false positive). For
the same reasons we discussed in the case of old, the result (or the
exception) is wrapped into an OCaml result so that the code reports
the undefineness issues at the time of the actual checks. The generated
code for pop is similar to the one presented in listing 6.1.
Remark 21. Note that a checks clause is incompatible with a raises

Invalid_argument clause.

val f : int -> int

(*@ y = f x

checks P

raises Invalid_argument _ -> Q *)

In that case, if f correctly raises Invalid_argument, (a) it can be because
P holds; (b) it can imply that Q holds; (c) or both at the same time. Since
there is no way of deciding one case from the other, instrumenting
this function would not bring guarantees regarding these clauses. For
this reason, specifications that combine these clauses are rejected by
Ortac.
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1 let pop q =

2 let check =

3 try Ok (elements q <<> []) with e -> Error e

4 in

5 let v =

6 try Queue.pop_exn q

7 with

8 | Invalid_argument _ as e ->

9 if (* Fail if the condition *was* verified. *)

10 try unwrap check

11 with e -> undefineness_failure e

12 then correctness_failure ();

13 (* Otherwise, it is correct: re-raise it. *)

14 raise e

15 | (Sys.Break | Stack_overflow | Out_of_memory) as e ->

16 if not (* Fail if it *was not* verified. *)

17 try (unwrap check)

18 with e -> undefineness_failure e

19 then correctness_failure ();

20 raise e

21 | e ->

22 if not (* Same here *)

23 try (unwrap check)

24 with e -> undefineness_failure e

25 then correctness_failure ();

26 unexpected_exception_failure e

27 in

28 if not (* Same here *)

29 try (unwrap check)

30 with e -> undefineness_failure e

31 then correctness_failure ();

32 ..... (* Check the normal postcondition *)

33 v

Listing 6.1: The handling of OCaml exceptions in the instrumented code pro-
duced for Queue.pop.
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PERSPECT IVES

Ortac is still a few steps away from a full-fledged tool that can be
deployed in a high-scale setting. To conclude this thesis, we show two
independent directions that can guide the development of the tool in
the future. One is an open scientific question: how can we execute and
verify logic models at runtime? In essence, these models do not exist
in the implementation and therefore are never created or updated by
the programs. The second is more of an engineering challenge: how
can we integrate Ortac’s workflow into the build system and package
manager of OCaml so that instrumentations compose correctly with
system dependencies, transitive dependencies, and the packaging of
libraries?

7.1 handling gospel models

With the mutable queues in chapter 3, we showed an example of how
the specification style can impact its executability. Logic models are
a central feature of Gospel; writing logic views of abstract types and
using them in function specifications is a natural way of writing spe-
cifications. They are also well supported by other tools that build upon
Gospel (e. g. the Why3 plugin and Cameleer).

They are, however, not easy to check at runtime since they do not
exist in the program space. For this reason, they are currently not sup-
ported by Ortac. The main challenge is that Ortac does not have any
information on how the models are updated after each function call and
cannot retrieve the model from the value it is attached to.

Therefore, developers must write specifications differently, for in-
stance, using pure functions, if they wish to use Ortac. Sadly, this is
not always a natural way of writing specifications. It may even force
developers to expose functions they otherwisewould not have exposed,
which hurts our initial goal of little intrusion. It is also not always pos-
sible, andmodels are generallymore expressive: theymay carry inform-
ation that is impossible to retrieve from the implementation. Therefore,
handling models is essential to supporting as many Gospel specifica-
tions as possible.

At this point, we do not have a plan for supporting all models in
specifications. However, when writing specifications with models, a
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specific shape of function postconditions naturally arises: postcondi-
tions that express the new value of the model directly, often as a func-
tion of its old version: v.model = <term>. For instance, in the mutable
queues example, we naturally wrote the specifications of create and
push that way:

type 'a t

(*@ mutable model elements: 'a sequence *)

val create: unit -> 'a t

(*@ q = create ()

ensures q.elements = empty *)

val push: 'a -> 'a t -> unit

(*@ push v q

modifies q

ensures q.elements = cons v (old q.elements) *)

When such postconditions are present, and the term is executable by
Ortac, we could use it to compute the new value of the model after a
call to the function. Ortac would then maintain the models associated
with each value and could verify the clauses that use them.

all or nothing. It is important to note that instrumenting a model
using this technique is only possible if all the functions in the module
have a compatible postcondition. Indeed, the model Ortac generates
must be in sync with the actual OCaml value at all times to be mean-
ingful. If one (or more) function in the interface does not have a post-
condition for this model, or if the postcondition is not of a compatible
form, then updating the model is not possible. In that case, the model
must be deemed not executable and ignored for all functions and in-
variants in the interface. For a model to be instrumentable this way,
all the functions in the interface must be specified with a compatible
postcondition.

a shift in the trust base. Using relational postconditions to gen-
erate and update the models corresponding to OCaml values has im-
portant implications regarding the verifications and guarantees Ortac
provides. In this context, such postconditions would not be verified
by the instrumented code: they would trusted. The generated mod-
els can still be used to check other preconditions and type invariants
that involve them. However, these checks are only meaningful if the
postconditions are correct, which Ortac cannot check.

the best-case scenario for hybrid verification. Let us zoom
out and consider the big picture of Gospel capabilities. In partic-
ular, Gospel interfaces well with Why3 via the interface refinment
plugin—for WhyML implementations—or Cameleer—for OCaml
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implementations. Both allow models to exist in the implementation Ghost code only
exists for
specifications and
cannot otherwise
affect the program
computations.

files, and some ghost code in the function’s body must update them
to let Why3 prove the corresponding postconditions. In the case of
our relational postconditions, the code that updates the model and the
relational postcondition are identical, which makes the proof trivial for
automatic provers. Therefore, this scenario is close to a best-case scen-
ario to verify the parts that Ortac assumes using Why3 and obtain
correct instrumentation.

a better syntax for relational postconditions. Suppose Or-
tac consider these specific postconditions differently for RAC. In that
case, it also makes sense to differentiate them at the Gospel language
level. It would immediately make relational postconditions visible
to both tools and users. One possible syntax option is to extend the
modifies clause as follows:
val push: 'a -> 'a t -> unit

(*@ push v q

modifies q.elements <- cons v (old q.elements) *)

It regroups two pieces of information conceptually significantly linked,
yet currently separated: which models are modified and how they are
modified. Note that this may not compose very well with exceptional
behaviours: modifies clauses—unlike ensures ones—apply to normal
and exceptional behaviours, but model mutations are often different.

7.2 integrating ortac to the ocaml platform

In chapter 3, we showed that Ortac provides a few options to control
its output depending on the context it is used in. However, we only
showed how to apply it to very basic scenarios with single-file libraries.
This structure is, of course, not realistic. Real-world programs combine
multiple libraries—some are local to the project, some are installed on
the system—into a final client code that may be a library or an execut-
able (or worse, a dynamic plugin). When these dependencies have
Gospel specifications, one must decide which ones to check, instru-
ment them with Ortac, compile them, and link the final code with
the correct implementation (instrumented or not). Developers should
also decide whether they package their libraries with the runtime veri-
fications enabled or not. Manually performing these tasks is daunting
and should ultimately be dealt with by a build system and a package
manager. In this section, we highlight some challenges ahead—and
propose some design options—to better integrate Ortac to some of
the most essential tools in the OCaml community: its build system
Dune and its package manager Opam.

first things first: better tooling for the gospel language.
A new language—even if ‘only’ a specification language—means re-
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newed needs for developer tools. At this stage, we proposed several
proofs of concept of possible integrations into some existing tools.

For instance, Gospel can pre-process specifications to be added to
the documentation comments, so users may see them in the HTML
documentation generated by Odoc. However, Odoc does not know
about Gospel specifically, so the current workaround is to insert them
as verbatim code in the documentation string. We can also manually
write custom rules to let Dune handle Gospel specifications type-
checking as part of the compilation chain. For instance, the following
rule automatically type-checks the specifications during the package
tests:

(rule

(alias runtest)

(action

(run gospel check %{dep:fibonacci.mli})))

Ultimately, Gospel could integrate seamlessly with these tools—and
others—to provide better user experience: editor integration à la mer-
lin, specification formatting with OCamlFormat, automatic integra-
tionwith Dune, understanding andprinting clauseswith cross-reference
links in generated documentations.

A challenging long-term plan is to replace part of the Gospel type-
checker to use the type information produced by the OCaml compiler
during the compilation instead. There is, however, no frontend for the
OCaml type-checker, so that would mean processing the compilation
artifacts (e. g. the *.cmti files) to gather the information. The plan
forward is not obvious at this stage, as this process would integrate
poorly with the current compilation chain of OCaml programs, espe-
cially when involving Ortac instrumentation as well. In any case, it is
not expressible with custom Dune rules.

instrumenting and packaging libraries. As for Ortac integra-
tion, the main challenge also lies in the integration to the build system
and package manager. Ideally, it is the build system’s responsibility to
understand the structure of the project to instrument and, therefore,
to invoke Ortac appropriately—e. g. on all interface files, and only
when interface files change. It should also integrate the generated files
into the compilation chain to produce the instrumented version of the
libraries.

There are multiple paths ahead to producing instrumented libraries.
One possible way is a Dune profile similar to dev or release that pro-
duces an instrumented version. Another interesting possibility is for
Dune to generate a library variant—a library with a different imple-
mentation but the same interface. That would allow library consumers
to switch between an runtime checked libary (e. g. for development
stages) and a ‘vanilla’ one (for production settings) by simply changing
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the dependency in the dune file. No modification would be necessary
in the OCaml client code at all.

; Depend on the vanilla fibonacci library

; This is the current available workflow without Ortac

(libraries fibonacci)

; OR

; Depend on the instrumented fibonacci library

; This one is generated by Ortac + Dune

(libraries fibonacci.rac)

As for the packaging of these libraries, the integration with Opam is
also not trivial: one should decidewhich version of the libraries to pack-
age and install. Ideally, when instrumenting a given ‘project’, (a) the lib-
raries that are local to the project should be fully instrumented; (b) the
direct dependencies should be instrumented with the preconditions
mode only; (c) the transitive dependencies should not be instrumented.
Note that some direct dependencies might also be transitive dependen-
cies. In that case, they should probably be instrumented for local calls,
but uninstrumented for external calls.

In the way Opam currently works, the behaviour we just described
is not achievable: it pulls dependencies source code, then compiles
them once and keeps the installed version along with the compiler in
a switch. However, in our description, we need libraries to potentially
be compiled multiple times, with different instrumentation levels, de-
pending on their dependency status in the project. It is possible that
opam-monorepo can bring part of a solution to this issue, since it op-
erates differently: it pulls all the sources locally and vendors them in
the project, then compiles them at the same time as the project itself
using Dune. Regardless, the correct design to achieve still requires
more experimentations and expertise to mature.





EP ILOGUE

My work as a PhD candidate is now over, but the Gospel and Ortac
projects are not.

In the past years, we have built a small yet potent team of Gospel
developers who will carry on working on this verification ecosystem.
It involves researchers and engineers from the Formal Methods Labor-
atory (LMF), Inria Paris, Tarides, and Nomadic Labs.

In December 2022, we were awarded an ANR grant to (a) further de-
velop the Gospel language to increase its expressiveness; (b) develop
a complete verification and test ecosystem around it, and improve its
integration to developer tools (e. g. IDE, build system, documentation
generators); (c) apply these tools to practical use cases anddemonstrate
their ability to scale up.

As for the Ortac project I started, it is now being actively developed
by Nicolas Osborne and Samuel Hym, who keep improving the
support for more Gospel specifications and more OCaml programs,
and experiment with complex and strangely exciting use cases.
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